切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (02) : 121 -127. doi: 10.3877/cma.j.issn.1672-6448.2024.02.003

心血管超声影像学

基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究
刘韩1, 王胰2, 舒庆兰2, 彭博1, 尹立雪2, 谢盛华2,()   
  1. 1. 610072 成都,西南石油大学计算机科学学院
    2. 四川省医学科学院•四川省人民医院(电子科技大学附属医院)心血管超声及心功能科 超声心脏电生理学与生物力学四川省重点实验室 四川省心血管病临床医学研究中心(国家心血管疾病临床医学研究中心四川分中心)
  • 收稿日期:2023-08-25 出版日期:2024-02-01
  • 通信作者: 谢盛华
  • 基金资助:
    四川省区域创新合作项目(2023YF00006); 四川省自然科学基金(2022NSFSC0662)

Deep learning-based intelligent assessment of tricuspid valve regurgitation severity by echocardiography

Han Liu1, Yi Wang2, Qinglan Shu2, Bo Peng1, Lixue Yin2, Shenghua Xie2,()   

  1. 1. School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
    2. Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Affiliated Hospital of University of Electronic Science and Technology of China), Department of Cardiovascular Ultrasound and Cardiac Function Laboratory of Cardiovascular Ultrasound Electrophysiology and Biomechanics, Key Laboratory of Sichuan Province; Sichuan Clinical Research Center for Cardiovascular Diseases (Sichuan Branch of National Clinical Research Center for Cardiovascular Diseases)
  • Received:2023-08-25 Published:2024-02-01
  • Corresponding author: Shenghua Xie
引用本文:

刘韩, 王胰, 舒庆兰, 彭博, 尹立雪, 谢盛华. 基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 121-127.

Han Liu, Yi Wang, Qinglan Shu, Bo Peng, Lixue Yin, Shenghua Xie. Deep learning-based intelligent assessment of tricuspid valve regurgitation severity by echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(02): 121-127.

目的

探究联合深度学习和三尖瓣彩色多普勒超声血流频谱图对心脏三尖瓣反流严重程度进行智能评估的可行性和准确性。

方法

选取2022年10月至2023年4月在四川省人民医院进行超声心动图检查诊断三尖瓣反流的患者2629例,获取三尖瓣彩色多普勒超声血流频谱图2629张。由2位高年资专科医师使用LabelMe软件,把每一个完整周期标注出来,按照9∶1的比例划分为训练集和验证集,采用YOLOv5深度学习网络实现反流心动周期的自动标注。采用平均精度、精确度、召回率对心动周期自动标注模型的性能进行评价。由2位高年资专科医师对单个心动周期反流频谱图的反流严重程度进行轻、中、重度划分,制作成数据集,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用ConvNeXt深度学习网络实现反流严重程度的评估。采用精确率、召回率、特异性和F1分数对反流程度评估模型的诊断性能进行评价。

结果

模型智能检测反流心动周期的平均精度为0.979,精确度为0.951,召回率为0.972;模型智能评估反流严重程度的预测结果的加权平均精确率为0.938,召回率为0.928,特异性为0.964,F1分数为0.953,均处于较高值范围。

结论

基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法的评估结果与超声医师人工评估的结果一致性较高,具有较好的可行性和诊断准确性。

Objective

To explore the feasibility and accuracy of deep learning-based intelligent assessment of the severity of tricuspid regurgitation by color Doppler echocardiographic flow spectrometry of the tricuspid valve.

Methods

A total of 2629 patients with tricuspid regurgitation diagnosed by echocardiography at Sichuan Provincial People's Hospital from October 2022 to April 2023 were selected, and 2629 color Doppler echocardiographic flow spectrometry images of the tricuspid valve were obtained. Two senior specialists used LabelMe software to label each complete cycle, and divided them into either a training set or a validation set at a ratio of 9:1. The YOLOv5 deep learning network was used to automatically annotate the regurgitation cardiac cycle. The performance of the automatic annotation model for the cardiac cycle was evaluated using average precision, accuracy, and recall. Two senior specialists classified the severity of regurgitation into mild, moderate, and severe levels for each single cardiac cycle regurgitation spectrometry image, and created datasets. The datasets were divided into a training set, a validation set, and a test set at a ratio of 8:1:1. The ConvNeXt deep learning network was used to evaluate the severity of regurgitation. The diagnostic performance of the regurgitation severity assessment model was evaluated using accuracy, recall, specificity, and F1 score.

Results

The model's average precision for intelligent detection of regurgitation heart cycle was 0.979, with an accuracy of 0.951 and recall rate of 0.972. The weighted average precision of the prediction results of the model's intelligent assessment of the severity of regurgitation was 0.938, with a recall rate of 0.928, specificity of 0.964, and F1 score of 0.953, all within a high value range.

Conclusion

The evaluation results of the intelligent assessment method for the severity of tricuspid regurgitation in echocardiography based on deep learning are highly consistent with those manually assessed by ultrasonographers, demonstrating good feasibility and diagnostic accuracy.

图1 血流频谱图周期及严重程度标签示例
图2 Labelme软件的工作流程
图3 目标检测模型YOLOv5网络架构 注:Focus为注意力模块;CBL为特征提取模块;CSP为跨阶段局部连接网络;SPP为空间金字塔池化;Concat为连接模块;Conv为卷积;BN为归一化;Leaky relu为激活函数;slice为数据切片操作;Maxpool为最大池化层
图4 卷积神经网络ConvNeXt网络架构 注:Block为模块;Downsample为下采样模块;dim为维度;Global Average Pooling为全局平均池化层;Lincar为全连接层;LN为层归一化
图5 血流频谱图评估心脏瓣膜反流严重程度模型建立的实验流程图。步骤1:对数据的采集和预处理;步骤2:使用LabelMe对数据集进行标记,使用python脚本对标记后的反流心动周期进行裁剪;步骤3:使用LabelMe标记后的血流频谱图训练YOLOv5网络模型;步骤4:使用裁剪后的反流心动周期图像训练ConvNeXt网络模型
图6 血流频谱图评估心脏瓣膜反流严重程度模型的测试流程图。步骤1:对数据的采集和预处理;步骤2:将预处理后的数据集输入到训练好的YOLOv5网络模型中,并且裁剪识别到的周期;步骤3:裁剪后的反流心动周期输入到ConvNeXt网络模型,得到瓣膜反流严重程度定性评估结果
图7 人工标注与YOLOv5模型标注的对比图。图a为人工标注;图b为YOLOv5模型标注
表1 卷积神经网络ConvNeXt模型预测结果
图8 卷积神经网络ConvNeXt模型预测结果混淆矩阵图
1
董念国, 曹红, 周廷文, 等.心脏瓣膜病治疗进展[J].临床心血管病杂志, 2022, 38(6): 429-432.
2
Turkoglu I, Arslan A, Ilkay E. An expert system for diagnosis of the heart valve diseases[J]. Expert Syst Appl, 2002, 23(3): 229-236.
3
Lancellotti P, Tribouilloy C, Hagendorff A, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease)[J]. Eur J Echocardiogr, 2010, 11(3): 223-244.
4
Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease)[J]. Eur J Echocardiogr, 2010, 11(4): 307-332.
5
Zhang Q, Liu Y, Mi J, et al. Automatic assessment of mitral regurgitation severity using the Mask R-CNN algorithm with color Doppler echocardiography images[J]. Comput Math Methods Med, 2021, 2021: 2602688.
6
Yang F, Zhu J, Wang J, et al. Self-supervised learning assisted diagnosis for mitral regurgitation severity classification based on color Doppler echocardiography[J]. Ann Transl Med, 2022, 10(1): 3.
7
Yang F, Chen X, Lin X, et al. Automated analysis of doppler echocardiographic videos as a screening tool for valvular heart diseases[J]. JACC Cardiovasc Imaging, 2022, 15(4): 551-563.
8
Casaclang-Verzosa G, Shrestha S, Khalil MJ, et al. Network tomography for understanding phenotypic presentations in aortic stenosis[J]. JACC Cardiovasc Imaging, 2019, 12(2): 236-248.
9
Jocher G, Stoken A, Borovec J, et al. Ultralytics/YOLOv5: v5. 0-YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[J]. Zenodo, 2021.
10
Liu Z, Mao H, Wu CY, et al. A convnet for the 2020s[C]//CVPR. 2022: 11976-11986.
11
郭颖, 张瑞生. 中国成人心脏瓣膜病超声心动图规范化检查专家共识[J]. 中国循环杂志, 2021, 36(2): 109-125.
12
Elsken T, Metzen JH, Hutter F. Simple and efficient architecture search for convolutional neural networks[C]. arXiv preprint arXiv:1711.04528, 2017.
13
Fang W, Wang L, Ren P. Tinier-YOLO: A real-time object detection method for constrained environments[J]. IEEE Access, 2019, 8: 1935-1944.
14
Zhou J, Du M, Chang S, et al. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis [J]. Cardiovasc Ultrasound, 2021, 19(1): 29.
15
Wu Y, Peng B, Luo Y, et al. Ultrasound vector flow mapping in left ventricle: a do it yourself study[C]. PRAI.IEEE, 2021: 261-266.
16
Atika L, Nurmaini S, Partan RU, et al. Image segmentation for mitral regurgitation with convolutional neural network based on UNet, Resnet, Vnet, FractalNet and SegNet: a preliminary study[J]. Big Data Cogn Comput, 2022, 6(4): 141.
[1] 张胜男, 苗雅敬, 周虹, 韩高洁, 王静, 仝巧立, 张旭倩, 尹洪宁. 左心耳三维经食管超声测量与Watchman左心耳封堵器大小的相关性研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 107-113.
[2] 肖莉莉, 吴道珠, 陈晓乐, 李秀云, 寇红菊. 胎儿心脏参数对胎儿宫内生长受限的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(01): 24-31.
[3] 谭芳, 杨娇娇, 范思涵, 叶彩玲, 纪学芹. 产前超声心动图在先天性血管环诊断中的价值[J]. 中华医学超声杂志(电子版), 2024, 21(01): 37-41.
[4] 梁越, 董晓秋, 李奇默, 李岩, 姚金来, 朴雪梅. 孕11~13+6周子宫动脉与左心室参数对子痫前期的预测模型构建与验证[J]. 中华医学超声杂志(电子版), 2024, 21(01): 42-48.
[5] 陈丽娟, 李晓琴, 施燕芸, 段彤彤. 胎儿左头臂静脉异常的超声特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1260-1265.
[6] 陈红, 阮骊韬, 师桃, 郭锋伟, 郝军军, 闫炀, 尚佳楠, 宋艳. 右心室心肌应变与左心室辅助装置植入后早期右心衰竭的相关性研究[J]. 中华危重症医学杂志(电子版), 2024, 17(01): 26-31.
[7] 王瑞, 张嘉炜, 张克诚, 周增丁. 基于深度学习的皮肤烧烫伤创面图像分割与分类及检测的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 172-175.
[8] 钟佩芝, 杜宇. 龋病诊断方法的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 73-79.
[9] 戴雨霖, 张新春. 人工智能在口腔修复诊疗中的应用与进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 65-69.
[10] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[11] 朱先理, 王守森. 大语言模型在创伤性脑损伤病历书写的应用前景[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 55-57.
[12] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[13] 陈健, 张子豪, 卢勇达, 夏开建, 王甘红, 刘罗杰, 徐晓丹. 基于深度学习构建结直肠息肉诊断自动分类模型[J]. 中华诊断学电子杂志, 2024, 12(01): 9-17.
[14] 王靖玺, 赵丽, 吕滨. 人工智能在肺栓塞CT检查中的临床研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 26-31.
[15] 胡陈玥, 葛贤秀, 邓雪婷, 姚家楠, 缪林. 图像增强放大内镜诊断胃癌前病变及早期胃癌[J]. 中华胃肠内镜电子杂志, 2024, 11(01): 47-51.
阅读次数
全文


摘要