切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (09) : 914 -917. doi: 10.3877/cma.j.issn.1672-6448.2024.09.015

综述

乳腺超声在青春期女童乳房发育评估中的应用进展
耿超1, 袁莉2,(), 付曼丽2, 景涵1   
  1. 1. 4300811 武汉,武汉科技大学医学部医学院
    2. 430015 武汉,华中科技大学同济医学院附属武汉儿童医院超声医学科
  • 收稿日期:2024-04-04 出版日期:2024-09-09
  • 通信作者: 袁莉

Recent advances in application of breast ultrasound for evaluation of breast development in adolescents

Chao Geng, Li Yuan(), Manli Fu, Han Jing   

  • Received:2024-04-04 Published:2024-09-09
  • Corresponding author: Li Yuan
引用本文:

耿超, 袁莉, 付曼丽, 景涵. 乳腺超声在青春期女童乳房发育评估中的应用进展[J]. 中华医学超声杂志(电子版), 2024, 21(09): 914-917.

Chao Geng, Li Yuan, Manli Fu, Han Jing. Recent advances in application of breast ultrasound for evaluation of breast development in adolescents[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(09): 914-917.

图1 青春期乳腺(图a)与成人乳腺(图b)的超声图像特征
表1 乳房发育超声分期方法与Tanner 临床乳房分期
分期系统 Ⅰ期 Ⅱ期 Ⅲ期 Ⅳ期 Ⅴ期
Tanner临床分期[2] 青春前期,乳房和乳头的外观与儿童相似,没有明显的性征发育 乳房开始发育,乳芽形成,乳头和乳晕区域略微隆起,呈小丘状 乳房进一步增大,乳头和乳晕区域更为突出,二者轮廓没有分离 乳房继续发育,体积增大,乳晕和乳头在乳房轮廓上方形成一个二级丘 乳房成熟期,与成年女性外观相似,乳晕退回乳房周围轮廓,仅乳头中心突出
超声分期法1(Bruni等[14] 乳芽的缺失对应于临床上完全没有明显的腺体与脂肪组织 乳芽首次出现,圆形,边缘呈线状,与周围的结缔脂肪组织截然不同,直径<1cm 正在生长的乳芽,形态与II期相似,但直径≥1cm 乳芽分支,从乳芽外周进入基质的分支较少 腺体结构在其最后生长阶段有一个类似金字塔的形状,在超声扫描中呈三角形,此时无法通过超声将腺体组织和基质区分开
超声分期法2(García等[15] 大多数情况下显示边界不清的高回声乳晕组织 一个高回声的乳晕后结节,中央有一个星形或线状的低回声区域,代表简单的分支导管 高回声腺体组织从乳晕区域向外延伸,中央有“蜘蛛状”低回声区域 大多数情况下可看到高回声的、主要位于乳晕周围的腺体组织,中央有突出的低回声区域,可识别到脂肪组织 高回声的腺体组织伴脂肪组织增加,但没有前述的中央低回声区域
超声分期法3(Bruserud等[16] 0期:圆形或细长形的、边界清楚的低回声小结节。1期:与超声0期类似,但周围可见1个或2个稍高回声的小三角形区域 边界清楚的稍高回声肿块,中央有线形、圆形、星形的低回声区域 高回声的腺体组织中央伴有“蜘蛛或章鱼形”低回声结节,低回声从乳晕向腺体延伸 乳晕后低回声结节与3期相比更圆、范围更大,且低回声结节与腺体组织之间的界限逐渐不明显 成熟乳房图像,不均匀的高回声腺体组织,并且中央没有低回声结节
1
Eckert-Lind C, Busch AS, Petersen JH, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis [J]. JAMA Pediatr, 2020, 174(4):e195881.
2
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls [J]. Arch Dis Child, 1969, 44(235): 291-303.
3
Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound:recommendations for information to women and referring physicians by the European Society of Breast Imaging [J]. Insights Imaging,2018, 9(4): 449-461.
4
Latronico AC, Brito VN, Carel JC. Causes, diagnosis, and treatment of central precocious puberty [J]. Lancet Diabetes Endocrinol, 2016,4(3): 265-274.
5
Zhu M, Fu J, Liang L, et al. [Epidemiologic study on current pubertal development in Chinese school-aged children] [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2013, 42(4): 396-402.
6
Bräuner EV, Busch AS, Eckert-Lind C, et al. Trends in the incidence of central precocious puberty and normal variant puberty among children in Denmark, 1998 to 2017 [J]. JAMA Netw Open, 2020, 3(10):e2015665.
7
Javed A, Lteif A. Development of the human breast [J]. Semin Plast Surg, 2013, 27(1): 5-12.
8
Hinck L, Silberstein GB. Key stages in mammary gland development:the mammary end bud as a motile organ [J]. Breast Cancer Res, 2005,7(6): 245-251.
9
Macias H, Hinck L. Mammary gland development [J]. Wiley Interdiscip Rev Dev Biol, 2012, 1(4): 533-557.
10
Gao Y, Saksena MA, Brachtel EF, et al. How to approach breast lesions in children and adolescents [J]. Eur J Radiol, 2015, 84(7):1350-1364.
11
Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development [J]. Cold Spring Harb Perspect Biol,2010, 2(6): a3251.
12
Moy L, Heller SL, Bailey L, et al. ACR appropriateness criteria®palpable breast masses [J]. J Am Coll Radiol, 2017, 14(5, Supplement):S203-S224.
13
Bock K, Duda VF, Hadji P, et al. Pathologic breast conditions in childhood and adolescence [J]. J Ultrasound Med, 2005, 24(10): 1347-1354.
14
Bruni V, Dei M, Deligeoroglou E, et al. Breast development in adolescent girls [J]. Adolescent and Pediatric Gynecology, 1990, 3(4):201-205.
15
García CJ, Espinoza A, Dinamarca V, et al. Breast US in children and adolescents [J]. Radiographics, 2000, 20(6): 1605-1612.
16
Bruserud IS, Roelants M, Oehme NHB, et al. Ultrasound assessment of pubertal breast development in girls: intra- and interobserver agreement [J]. Pediatr Radiol, 2018, 48(11): 1576-1583.
17
Pan D, Fu S, Li X, et al. The concordance between ultrasonographic stage of breast and Tanner stage of breast for overweight and obese girls: a school population-based study [J]. 2021, 34(12): 1549-1558.
18
Yüce Ö, Sevinç D. Ultrasonographic assessment of pubertal breast development in obese children: compliance with the clinic [J]. J Pediatr Endocrinol Metab, 2018, 31(2): 137-141.
19
Youn I, Park SH, Lim IS, et al. Ultrasound assessment of breast development: distinction between premature thelarche and precocious puberty [J]. AJR Am J Roentgenol, 2015, 204(3): 620-624.
20
Hergenroeder AC, Hill RB, Wong WW, et al. Validity of selfassessment of pubertal maturation in African American and European American adolescents [J]. J Adolesc Health, 1999, 24(3): 201-205.
21
Bruserud IS, Roelants M, Oehme NHB, et al. References for ultrasound staging of breast maturation, tanner breast staging, pubic hair, and menarche in norwegian girls [J]. J Clin Endocrinol Metab,2020, 105(5): 1599-1607.
22
Calcaterra V, Sampaolo P, Klersy C, et al. Utility of breast ultrasonography in the diagnostic work-up of precocious puberty and proposal of a prognostic index for identifying girls with rapidly progressive central precocious puberty [J]. Ultrasound Obstet Gynecol,2009, 33(1): 85-91.
23
Madsen A, Bruserud IS, Bertelsen B, et al. Hormone references for ultrasound breast staging and endocrine profiling to detect female onset of puberty [J]. J Clin Endocrinol Metab, 2020, 105(12): e4886-e4895.
24
Keçeli M, Akyürek N. Early breast development in girls: the power of greyscale sonography and sonoelastography [J]. Br J Radiol, 2024,97(1155): 594-599.
25
Qi X, Zhang L, Chen Y, et al. Automated diagnosis of breast ultrasonography images using deep neural networks [J]. Med Image Anal, 2019, 52: 185-198.
26
Qian X, Pei J, Zheng H, et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning [J]. Nat Biomed Eng, 2021, 5(6): 522-532.
27
Pan L, Liu G, Mao X, et al. Machine learning identifies girls with central precocious puberty based on multisource data[J]. JAMIA Open,2020, 3(4): 567-575.
28
Razzaq M, Clément F, Yvinec R. An overview of deep learning applications in precocious puberty and thyroid dysfunction [J]. Front Endocrinol (Lausanne), 2022, 13: 959546.
No related articles found!
阅读次数
全文


摘要