切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (01) : 62 -69. doi: 10.3877/cma.j.issn.1672-6448.2025.01.009

胸部超声影像学

双模态超声影像组学列线图鉴别周围型肺局灶性病变良恶性的价值
赵捷1, 朱丽静2, 郝磊2, 陈泽政1, 王博娟2, 徐景竹2, 张凯2, 土继政2, 王兴华2,()   
  1. 1. 030001 太原,山西医科大学医学影像学院
    2. 030001 太原,山西医科大学第二医院超声科
  • 收稿日期:2024-10-29 出版日期:2025-01-01
  • 通信作者: 王兴华

Value of dual-modal ultrasound imaging nomogram in differentiating benign and malignant peripheral pulmonary focal lesions

Jie Zhao1, Lijing Zhu2, Lei Hao2, Zezheng Chen1, Bojuan Wang2, Jingzhu Xu2, Kai Zhang2, Jizheng Tu2, Xinghua Wang2,()   

  1. 1. Medical Imaging Department of Shanxi Medical University,Taiyuan 030001, China
    2. Department of Ultrasonography, the Second Hospital of Shanxi Medical University,Taiyuan 030001, China
  • Received:2024-10-29 Published:2025-01-01
  • Corresponding author: Xinghua Wang
引用本文:

赵捷, 朱丽静, 郝磊, 陈泽政, 王博娟, 徐景竹, 张凯, 土继政, 王兴华. 双模态超声影像组学列线图鉴别周围型肺局灶性病变良恶性的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(01): 62-69.

Jie Zhao, Lijing Zhu, Lei Hao, Zezheng Chen, Bojuan Wang, Jingzhu Xu, Kai Zhang, Jizheng Tu, Xinghua Wang. Value of dual-modal ultrasound imaging nomogram in differentiating benign and malignant peripheral pulmonary focal lesions[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(01): 62-69.

目的

通过构建双模态超声特征和影像组学联合的列线图模型,评估其在鉴别周围型肺局灶性病变良恶性中的价值。

方法

回顾性收集2017 年10 月至2023 年10 月于山西医科大学第二医院经超声引导下穿刺活检病理证实的周围型肺局灶性病变患者306 例,其中良性病变患者143例,恶性病变患者163 例,所有患者均行二维超声及超声造影检查。按照7 ∶3 的比例将患者随机分为训练集(214 例)和验证集(92 例),对双模态超声图像进行影像组学特征提取。采用最小绝对收缩和选择算子(LASSO)回归筛选最优特征并构建影像组学评分(Rad-score);使用单因素及多因素Logistic 回归分析筛选鉴别诊断的独立危险因素,分别建立临床模型、Rad-score 及联合列线图模型。其中联合列线图模型是在多因素分析的基础上同时纳入Rad-score 和临床独立危险因素,而临床模型仅纳入临床独立危险因素。采用受试者工作特征曲线、校准曲线及临床决策曲线评估各模型的鉴别效能。

结果

通过特征降维和筛选,共得到14 个影像组学特征。多因素Logistic 回归分析表明,年龄、病灶形态、病灶与肺组织增强时间差、增强模式及Rad-score 是判断周围型肺局灶性病变良恶性的独立危险因素,基于以上因素建立的联合列线图模型在训练集和验证集中的曲线下面积分别为0.894、0.917,均高于临床模型和Rad-score 单独应用时的诊断效能。校准曲线显示列线图模型预测概率与病理结果间具有良好的一致性;临床决策曲线表明列线图模型在较大阈值范围对鉴别诊断周围型肺局灶性病变良恶性提供了更高的临床价值。

结论

将二维超声、超声造影特征与影像组学联合,可较好地鉴别周围型肺局灶性病变的良恶性,为临床诊断提供依据。

Objective

To develop a nomogram based on dual-modal ultrasound features and radiomics, and to evaluate its value in differentiating benign and malignant peripheral pulmonary focal lesions.

Methods

A total of 306 patients with peripheral pulmonary focal lesions confirmed by ultrasoundguided biopsy in the Second Hospital of Shanxi Medical University from October 2017 to October 2023 were retrospectively collected, including 143 patients with benign lesions and 163 patients with malignant lesions.All patients underwent two-dimensional ultrasound and contrast-enhanced ultrasound.At a ratio of 7:3, the patients were randomly divided into a training set (214 cases) and a validation set (92 cases),and extraction of radiomics feature from dual-modal ultrasound images was performed.The least absolute shrinkage and selection operator (LASSO) regression was used to screen the optimal features and construct the radiomics score (Rad-score).Univariate and multivariate Logistic regression analyses were performed to screen independent risk factors for differential diagnosis, and a clinical model and a nomogram model were developed.The nomogram model included both Rad-score and independent clinical risk factors identified by multivariate analysis, while the clinical model only included independent clinical risk factors.Receiver operating characteristic curve, calibration curve, and clinical decision curve analyses were used to evaluate the efficiency of each model.

Results

A total of 14 radiomics features were obtained by feature dimension reduction and screening.Multivariate Logistic regression analysis showed that age, lesion morphology,lesion-lung tissue enhancement time difference, enhancement mode, and Rad-score were independent risk factors for judging the benign and malignant nature of peripheral pulmonary focal lesions.The area under the curve of the nomogram based on the above factors in the training set and validation set was 0.894 and 0.917, respectively, which was higher than that of the clinical model and Rad-score alone.The calibration curve showed a good consistency between the predicted probability of the nomogram and the pathological results.The clinical decision curve showed that the nomogram model provided higher clinical value in the differential diagnosis of benign and malignant peripheral pulmonary focal lesions in a larger threshold range.

Conclusion

The combination of two-dimensional ultrasound, contrast-enhanced ultrasound features, and radiomics can better identify the benign and malignant peripheral pulmonary focal lesions and provide a basis for clinical diagnosis.

图1 周围型肺局灶性病变二维超声(图a)及超声造影(图b)勾画感兴趣区(图c、d 红色部分)
表1 不同集合中周围型肺局灶性病变患者良恶性组基本临床资料和多模态超声特征比较
图2 使用LASSO 回归筛选影像组学特征,使用最小平均二项偏差的λ 值确定特征数量
图3 临床超声特征及影像组学评分联合模型列线图
表2 3 种模型鉴别周围型肺局灶性病变良恶性的效能
图4 训练集(图a)和验证集(图b)中3 种模型鉴别周围型肺局灶性病变良恶性的受试者操作特征曲线 注:Rad-score 为影像组学评分
图5 联合列线图鉴别训练集(图a)和验证集(图b)周围型肺局灶性病变患者病灶良恶性的混淆矩阵图
图6 联合列线图鉴别训练集(图a)和验证集(图b)周围型肺局灶性病变的校准曲线
图7 3 种模型鉴别诊断周围型肺局灶性病变良恶性的临床决策曲线 注:Rad-score 为影像组学评分
1
Eldridge L, Wagner EM.Angiogenesis in the lung [J].J Physiol, 2019,597(4): 1023-1032.
2
Eldridge L, Moldobaeva A, Zhong Q, et al.Bronchial artery angiogenesis drives lung tumor growth [J].Cancer Res, 2016, 76(20):5962-5969.
3
Fu Y, Zhang YY, Cui LG, et al.Ultrasound-guided biopsy of pleuralbased pulmonary lesions by injection of contrast-enhancing drugs [J].Front Pharmacol, 2019, 10: 960-967.
4
Fu Y, Lei Y, Cui L, et al.Can ultrasound and contrast-enhanced ultrasound help differentiate between subpleural focal organizing pneumonia and primary lung malignancy? [J].Diagnostics (Basel),2022, 12(9): 2074-2084.
5
朱丽静, 王兴华.超声造影定量参数对肺部良恶性病变鉴别诊断的研究 [J].中国临床医学影像杂志, 2020, 31(1): 34-37.
6
郭西源, 郝磊, 朱丽静, 等.超声造影鉴别诊断周围型肺局灶性病变的临床价值 [J].临床超声医学杂志, 2020, 22(11): 866-868.
7
Findeisen H, Trenker C, Figiel J, et al.Vascularization of primary,peripheral lung carcinoma in CEUS - a retrospective study (n = 89 patients) [J].Ultraschall Med, 2019, 40(5): 603-608.
8
Calamai I, Greco M, Finazzi S, et al.Thoracic Ultrasonography reporting:the TUONO study [J].J Clin Med, 2022, 11(23): 7126-7135.
9
宋奕薇, 李曼熙, 李阳, 等.基于临床及超声特征列线图模型诊断淋巴瘤 [J].中国介入影像与治疗学, 2024, 21(3): 170-174.
10
Guo SY, Zhou P, Zhang Y, et al.Exploring the value of radiomics features based on B-mode and contrast-enhanced ultrasound in discriminating the nature of thyroid nodules [J].Front Oncol, 2021,11: 738909-73917.
11
Bade BC, Dela Cruz CS.Lung cancer 2020: epidemiology, etiology,and prevention [J].Clin Chest Med, 2020, 41(1): 1-24.
12
Bi K, Xia DM, Fan L, et al.Development and prospective validation of an ultrasound prediction model for the differential diagnosis of benign and malignant subpleural pulmonary lesions: a large ambispective cohort study [J].Front Oncol, 2021, 11: 656060-656072.
13
Boccatonda A, Guagnano MT, D’Ardes D, et al.The role of contrastenhanced ultrasound in the differential diagnosis of malignant and benign subpleural lung lesions [J].J Clin Med, 2024, 13(8): 2302-2330.
14
郭西源, 朱丽静, 土继政, 等.超声造影与增强CT 对周围型肺局灶性病变诊断价值的对比研究 [J].中国临床医学影像杂志, 2021,32(11): 799-802.
15
魏伟, 冯慧俊, 韦天军, 等.基于超声影像组学鉴别腮腺良性与恶性肿瘤临床应用价值 [J].中国超声医学杂志, 2023, 39(6): 613-617.
16
张旭, 黄品同.基于灰阶超声影像组学的颈部淋巴瘤预测模型研究 [J].中华超声影像学杂志, 2021, 30(6): 506-512.
17
Chen M, Copley SJ, Viola P, et al.Radiomics and artificial intelligence for precision medicine in lung cancer treatment [J].Semin Cancer Biol, 2023,93: 97-113.
18
Du D, Gu J, Chen X, et al.Integration of PET/CT radiomics and semantic features for differentiation between active pulmonary tuberculosis and lung cancer [J].Mol Imaging Biol, 2021, 23(2): 287-298.
19
Gong JW, Zhang Z, Luo TY, et al.Combined model of radiomics,clinical, and imaging features for differentiating focal pneumonialike lung cancer from pulmonary inflammatory lesions: an exploratory study [J].BMC Med Imaging, 2022, 22(1): 98-107.
20
Wei M, Du Y, Wu X, et al.A benign and malignant breast tumor classification method via efficiently combining texture and morphological features on ultrasound images [J].Comput Math Methods Med, 2020, 2020: 5894010-5894021.
[1] 孙舒涵, 陈雅静, 宗晴晴, 栗翠英, 缪殊妹, 杨斌, 俞飞虹. 基于超声的深度学习列线图预测乳腺癌新辅助化疗后腋窝淋巴结状态的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 97-105.
[2] 王丹, 黄慧, 谢磊, 孙盼盼, 赵蕾, 陈佩文, 陈欣林. 基于中国胎儿超声筛查大数据的4345 例胎儿室间隔缺损分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 114-119.
[3] 沈婷婷, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 张铭旋. 胎儿心脏定量分析技术评估单纯性完全型大动脉转位胎儿心脏形态及功能的初步研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 120-130.
[4] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[5] 李田香, 赵瑞娜, 康琳, 毕江涵, 陈聪, 杨萌. 基于超声的影像组学模型对老年人肌少症的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(01): 70-78.
[6] 徐霞, 胡佳民, 黄丽萍, 承龙, 张书流, 赵炜炜, 顾盼盼, 曹铖. 老年重症患者早期肠内营养喂养不耐受现况及风险预测列线图的构建与验证[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(01): 11-17.
[7] 潘霞, 李琳, 朱磊, 代超, 庞乐. 汉中社区老年人口腔衰弱风险关联性分析与列线图模型构建[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 25-32.
[8] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[9] 沈丹枫, 常鹏, 陆颖超, 徐红星, 顾强. PCT、CRP对急性胆管炎严重程度的早期预测价值及列线图模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 192-195.
[10] 李峥, 马晋峰. 基于炎症反应评分系统构建预测根治性术后食管胃结合部腺癌患者预后的列线图模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 170-175.
[11] 尹泽新, 杨继林, 李有尧, 吴美龙, 刘利平. 肝癌微血管侵犯的术前预测研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 128-134.
[12] 方海丽, 王俊, 栾琳. HBV 相关慢加急性肝衰竭患者诱发肝性脑病风险列线图模型构建与验证应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 144-148.
[13] 薛伟, 祝华, 贾涛. 经腹超声黏膜下层指数结合hs-CRP、IL-6、IL-8对溃疡性结肠炎患者早期治疗效果的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 55-59.
[14] 汪小琳, 廖娟, 冯声蓉, 王毅, 金碧, 黄银平. 经腹超声黏膜下层指数结合血液炎症检查对中重度溃疡性结肠炎患者治疗效果的评价[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 60-64.
[15] 赵高芳, 陈京, 王春梅, 吴娟. 乳腺癌腋窝淋巴结转移负荷的超声组学研究[J/OL]. 中华介入放射学电子杂志, 2025, 13(01): 54-61.
阅读次数
全文


摘要