切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (05) : 388 -396. doi: 10.3877/cma.j.issn.1672-6448.2025.05.002

超声医学质量控制

人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究
何冠南1, 谭莹2, 路玉欢3, 蒲斌3, 扬水华4, 张仁铁5, 陈明6, 石智红7, 钟晓红8, 陈曦1, 燕柳屹1, 李胜利2,()   
  1. 1. 610045 成都,四川省妇幼保健院超声科
    2. 518028 南方医科大学附属深圳市妇幼保健院超声科
    3. 410082 长沙,湖南大学信息科学与工程学院
    4. 530002 南宁,广西壮族自治区妇幼保健院超声科
    5. 554300 贵州铜仁,铜仁市妇幼保健院超声科
    6. 150500 哈尔滨红十字医院超声科
    7. 250099 济南市妇幼保健院超声科
    8. 361003 厦门市妇幼保健院超声科
  • 收稿日期:2025-04-11 出版日期:2025-05-01
  • 通信作者: 李胜利

Application of artificial intelligence in quality control of standard views for fetal echocardiography: a multi-center study

Guannan He1, Ying Tan2, Yuhuan Lu3, Bin Pu3, Shuihua Yang4, Rentie Zhang5, Ming Chen6, Zhihong Shi7, Xiaohong Zhong8, Xi Chen1, Liuyi Yan1, Shengli Li2,()   

  1. 1. Department of Ultrasound, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
    2. Department of Ultrasound,Affiliated Shenzhen Maternal and Child Healthcare Hospital of Nanfang Medical University, Shenzhen 518028, China
    3. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
    4. Department of Ultrasound, Maternity and Child Health Care of Guanxi Zhuang Autonomous Region, Nanning 530002, China
    5. Department of Ultrasound, Tongren Maternal And Child Health Care Hospital, Tongren 554300, China
    6. Department of Ultrasound, Harbin Red Cross Central Hospital, Haerbin 150500, China
    7. Department of Ultrasound, Jinan Maternity and Child Care Hospital, Jinan 250099, China
    8. Department of Ultrasound, Xiamen Maternity and Child Care Hospital, Xiamen 361003, China
  • Received:2025-04-11 Published:2025-05-01
  • Corresponding author: Shengli Li
引用本文:

何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.

Guannan He, Ying Tan, Yuhuan Lu, Bin Pu, Shuihua Yang, Rentie Zhang, Ming Chen, Zhihong Shi, Xiaohong Zhong, Xi Chen, Liuyi Yan, Shengli Li. Application of artificial intelligence in quality control of standard views for fetal echocardiography: a multi-center study[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(05): 388-396.

目的

探讨人工智能深度学习算法在胎儿心脏11 个标准切面质量控制中的应用价值。

方法

选择7 家医院胎儿超声心动图检查病例图片,筛选其中妊娠20 ~34 周的胎儿心脏图像共35 331 张。根据胎儿心脏检查超声指南推荐需要留存的11 个胎儿心脏切面,提出一种融合Transformer 技术(深度学习的架构之一)的心脏切面自动质量控制方法对胎儿心脏图像进行质量控制。以专家团队评定的结果为标准,将收集到的胎儿心脏图像分为数据集A 和数据集B,分别包含24 000、11 331 张图像。数据集A 用于深度学习模型训练,数据集B 则分别用于深度学习预测以及2名具有5 年超声心动图检查经验的医师进行人工质量评估。采用平均精度(AP)值作为核心统计指标评估模型性能。

结果

融合Transformer 技术的心脏切面自动质量控制方法对于胎儿心脏切面解剖结构识别的AP 值达到了0.885,可以准确识别胎儿超声心动图需要留存切面常用解剖结构。深度学习模型识别胎儿心脏超声图像平均时长为0.028 s/张,而2 名超声医师识别的平均时长为3.77 s/张,使用基于深度学习的方法评估胎儿心脏超声图像质量的速度是医师人工评估的134.6 倍。

结论

运用深度学习模型对胎儿心脏超声切面进行质量控制可以达到专家判定的水平并节省了时间。

Objective

To explore the application value of deep learning algorithms in quality control of the 11 standard fetal cardiac views.

Methods

Images of fetal echocardiography were collected from seven hospitals, of which a total of 35331 images were selected from fetuses between 20 and 34 weeks of gestation.Based on the 11 standard fetal cardiac views recommended by fetal echocardiography guidelines, a novel automatic quality control method integrating transformer-based techniques was proposed to assess image quality.Using expert evaluation as the reference standard, the collected images were divided into two datasets: dataset A (24 000 images) for model training, and dataset B (11 331 images) for both deep learning-based prediction and manual quality assessment by two physicians with five years of clinical experience.Average precision (AP) was used as the primary metric to evaluate model performance.

Results

The transformer-based automatic quality control method achieved an AP of 0.885 in recognizing anatomical structures in fetal cardiac views, demonstrating accurate identification of key anatomical features required in standard fetal echocardiography.The deep learning model processed each image in approximately 0.028 seconds, while the two experienced physicians took an average of 3.77 seconds per image.Thus, the deep learning-based approach was 134.6 times faster than manual evaluation.

Conclusion

The application of deep learning models for quality control of fetal echocardiographic views can achieve expert-level performance while significantly reducing the time required for manual quality assessment.

表1 妊娠20 ~34 周正常胎儿超声心动图数据集分布
图1 人工智能模型检测胎儿超声心动图11 个标准切面上解剖结构框及标准切面示意图 注:左边为超声切面图像,右边为该切面的模式图(Schematic),从左到右依次为AC(腹部横切面)、4CH(四腔心切面)、LVOT(左心室流出道切面)、RVOT(右心室流出道切面、SA(大动脉短轴切面)、3VV(三血管切面)、LRPA(左、右肺动脉分叉切面)、3VT(三血管气管切面)、AoArch(主动脉弓切面)、DuArch(动脉导管弓切面)、CLA(上、下腔静脉长轴切面);R 为右侧,L 为左侧,RIB 为肋骨,IVC 为下腔静脉,AW 为腹壁,UV 为脐静脉,PV 为门静脉,SP 为脊柱,ST 为胃,AO 为主动脉,LV 为左心室,RV 为右心室,LA 为左心房,RA 为右心房,DAO 为降主动脉,IVS 为室间隔,LVTO 为左心室流出道,ARCH 为主动脉弓,SVC 为上腔静脉,MPA 为主肺动脉,RPA 为右肺动脉,AAO 为升主动脉,ICSA 为头颈部血管分支
图2 评估胎儿超声心动图图像质量的框架图示 注:CD 为结构检测模块,QA 为图像质量判别模块,Section 为切面,Standard 为标准,Score 为分数,query 为特征队列,Encoder 为特征编码器,Decoder 为特征解码器,Box-branch 为目标框定位分支,Class-branch 为类别分支,Check-branch 为信息校验分支
图3 胎儿超声心动图切面判别结果可视化图像示例。该可视化视图为人工智能模型在对原始超声图像进行判断时,通过对各切面上应显示解剖结构进行识别,并将识别的解剖结构用矩形方框圈出 注:YOLOF、RSB、DDOD、Anchor Pruning、DyHead、SABL、AutoAssign、CentripetalNet、ATSS、FoveaBox 为10 种先进检测算法,LVOT 为左心室流出道切面,LRPA 为左、右肺动脉分叉切面,RVOT 为右心室流出道切面,SA 为大动脉短轴切面,3VV 为三血管切面,3VT 为三血管气管切面
表2 本研究模型算法与同类算法在胎儿超声心动图切面类型和解剖结构识别准确率方面比较的结果
项 目 YOLOF RSB DDOD Anchor Pruning DyHead SABL AutoAssign CentripetalNet ATSS FoveaBox 心脏智能质控模型
切面
AP50 0.839 0.839 0.744 0.557 0.822 0.854 0.848 0.814 0.835 0.829 0.877
DuArch 0.889 0.902 0.822 0.677 0.879 0.895 0.913 0.866 0.886 0.892 0.911
3VT 0.724 0.760 0.661 0.348 0.679 0.768 0.760 0.639 0.717 0.729 0.789
3VV 0.665 0.658 0.557 0.264 0.606 0.694 0.677 0.554 0.654 0.659 0.704
AC 0.999 0.999 0.897 0.981 0.991 0.999 1.000 0.954 0.981 0.946 1.000
CLA 0.815 0.870 0.793 0.602 0.832 0.876 0.845 0.826 0.838 0.830 0.849
4CH 0.966 0.965 0.903 0.889 0.962 0.965 0.965 0.893 0.960 0.963 0.972
SA 0.799 0.793 0.750 0.503 0.786 0.791 0.813 0.717 0.789 0.772 0.831
RVOT 0.649 0.639 0.551 0.225 0.590 0.662 0.655 0.532 0.653 0.649 0.699
LVOT 0.803 0.778 0.740 0.372 0.686 0.813 0.791 0.705 0.739 0.765 0.830
LRPA 0.854 0.853 0.814 0.266 0.837 0.874 0.850 0.811 0.865 0.848 0.875
AoArch 0.855 0.872 0.790 0.693 0.852 0.899 0.886 0.861 0.858 0.871 0.904
其他切面 0.959 0.949 0.538 0.906 0.961 0.956 0.966 0.669 0.960 0.888 0.972
切面框AP 0.831 0.837 0.735 0.561 0.805 0.849 0.843 0.752 0.825 0.818 0.861
解剖结构
AAO 0.894 0.899 0.811 0.704 0.881 0.893 0.905 0.913 0.885 0.876 0.922
AO 0.884 0.916 0.682 0.531 0.907 0.895 0.917 0.942 0.917 0.870 0.930
ARCH 0.859 0.863 0.791 0.520 0.852 0.873 0.864 0.881 0.868 0.859 0.895
AW 0.997 0.999 0.985 0.983 0.989 0.962 0.999 0.974 0.989 0.998 1.000
DAO 0.925 0.915 0.853 0.743 0.916 0.933 0.924 0.919 0.923 0.914 0.946
IAVS 0.888 0.868 0.714 0.540 0.855 0.880 0.877 0.859 0.875 0.890 0.922
ICSA 0.587 0.592 0.521 0.149 0.549 0.662 0.660 0.520 0.567 0.601 0.746
IVC 0.811 0.786 0.654 0.349 0.773 0.798 0.810 0.815 0.814 0.748 0.817
IVS 0.827 0.855 0.741 0.412 0.798 0.836 0.839 0.855 0.809 0.808 0.892
LA 0.844 0.818 0.755 0.484 0.801 0.846 0.831 0.850 0.825 0.851 0.876
LAAO 0.765 0.745 0.636 0.229 0.723 0.774 0.754 0.790 0.732 0.728 0.806
LPA 0.787 0.801 0.722 0.538 0.817 0.841 0.806 0.808 0.815 0.798 0.849
LV 0.881 0.866 0.756 0.505 0.834 0.888 0.878 0.870 0.852 0.852 0.917
MPA 0.804 0.792 0.728 0.387 0.803 0.852 0.810 0.833 0.805 0.843 0.861
MPADA 0.847 0.841 0.765 0.618 0.834 0.856 0.840 0.821 0.832 0.838 0.854
RA 0.882 0.870 0.805 0.639 0.864 0.889 0.877 0.858 0.871 0.869 0.904
RIB 0.787 0.702 0.657 0.530 0.758 0.782 0.753 0.664 0.771 0.739 0.812
RPA 0.854 0.885 0.769 0.583 0.844 0.860 0.855 0.871 0.858 0.840 0.906
RV 0.838 0.822 0.720 0.513 0.818 0.829 0.824 0.810 0.809 0.809 0.866
SP 0.955 0.945 0.911 0.931 0.951 0.946 0.952 0.937 0.951 0.939 0.956
ST 0.974 0.969 0.951 0.939 0.971 0.980 0.974 0.969 0.977 0.971 0.973
SVC 0.768 0.778 0.642 0.383 0.753 0.803 0.795 0.821 0.783 0.770 0.844
T 0.611 0.698 0.464 0.221 0.662 0.684 0.708 0.741 0.682 0.654 0.779
UVPV 0.966 0.953 0.917 0.892 0.962 0.972 0.964 0.955 0.966 0.950 0.972
结构框AP 0.843 0.841 0.748 0.555 0.830 0.856 0.851 0.845 0.841 0.834 0.885
表3 心脏智能质控模型及医师组对胎儿超声心动图切面类型及切面标准性判断结果比较
表4 心脏智能质控模型及医师组判断胎儿超声心动图切面类型检测速度结果(s/张)
1
Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, et al.Machine learning in fetal cardiology: what to expect [J].Fetal Diagn Ther,2020, 47(5): 363-372.
2
Gómez Montes E, Herraiz I, Mendoza A, et al.Fetal intervention in right outflow tract obstructive disease: selection of candidates and results [J].Cardiol Res Pract, 2012, 2012: 592403.
3
宋书豪, 曾施.应用深度学习模型分类正常胎儿心脏超声切面 [J].中国医学影像技术, 2025, 41(1): 70-73.
4
陈雯雯, 朱业, 张易薇, 等.深度学习模型用于自动分类超声心动图切面 [J].中国医学影像技术, 2024, 40(8): 1124-1129.
5
成汉林, 史中青, 戚占如, 等.基于深度学习的超声心动图动态图像切面识别研究 [J/OL].中华医学超声杂志(电子版), 2024, 21(2):128-136.
6
石智红, 李胜利.人工智能在产前超声中的应用和研究进展 [J/OL].中华医学超声杂志(电子版), 2023, 20(1): 113-117.
7
李胜利, 秦越, 谭光华, 等.医学超声人工智能的应用与挑战 [J/OL].中华医学超声杂志(电子版), 2023, 20(1): 1-5.
8
Pu B, Wang L, Yang J, et al.M3-UDA: a new benchmark for unsupervised domain adaptive fetal cardiac structure detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024: 11621-11630.
9
Wu L, Cheng JZ, Li S, et al.FUIQA: fetal ultrasound image quality assessment with deep convolutional networks [J].IEEE Trans Cybern,2017, 47(5): 1336-1349.
10
Abdi AH, Luong C, Tsang T, et al.Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J].IEEE Trans Med Imaging, 2017,36(6): 1221-1230.
11
Abdi AH, Luong C, Tsang T, et al.Quality assessment of echocardiographic cine using recurrent neural networks: feasibility on five standard view planes [C]//Medical Image Computing and Computer Assisted Intervention - MICCAI 2017.Cham, 2017: 302-310.
12
Pu B, Li K, Li S, et al.Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT [J].IEEE Trans Industr Inform, 2021, 17(11): 7771-7780.
13
Pu B, Lu Y, Chen J, et al.Mobileunet-fpn: a semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments [J].IEEE J Biomed Health Inform, 2022,26(11): 5540-5550.
14
Pu B, Zhu N, Li K, et al.Fetal cardiac cycle detection in multiresource echocardiograms using hybrid classification framework [J].Future Generation Computer Systems, 2021, 115: 825-836.
15
Lu Y, Li K, Pu B, et al.A YOLOX-based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in Fetal Ultrasound Images [J].IEEE/ACM Trans Comput Biol Bioinform, 2022, 21(4):1007-1018.
16
Shan A, Lv J, Zhu H, et al.Fetal heart and descending aorta detection in four-chamber view of fetal echocardiography [J].Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2722-2725.
17
American Institute of Ultrasound in Medicine.AIUM practice guideline for the performance of fetal echocardiography [J].J Ultrasound Med, 2013, 32(6): 1067-1082.
18
International Society of Ultrasound in Obstetrics and Gynecology,Carvalho JS, Allan LD, et al.ISUOG Practice Guidelines (updated):sonographic screening examination of the fetal heart [J].Ultrasound Obstet Gynecol, 2013, 41(3): 348-359.
19
Chinese standard for fetal echocardiography [J].Chin J Ultrasonogr,2015, 24(11): 921-926.
20
Abdi AH, Luong C, Tsang T, et al.Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J].IEEE Trans Med Imaging, 2017,36(6): 1221-1230.
21
Dong J, Liu S, Liao Y, et al.A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J].IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
[1] 姜玉新. 人工智能与超声质控的深度融合:赋能精准医疗与同质化发展[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 486-486.
[2] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[3] 国家感染性疾病医疗质量控制中心. 慢性乙型肝炎及并发症诊治质量改进专家共识[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(01): 16-22.
[4] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[5] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[6] 陈洁莹, 许晶莹, 黄泽萍. 超声在女性压力性尿失禁诊断与疗效评估中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 14-20.
[7] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[8] 彭子洋, 王志博, 巴赫, 颜彦, 彭浩茜, 李宇, 刘学民, 向俊西, 吴荣谦, 吕毅. 增强现实、虚拟现实与混合现实在腔镜肝脏外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 13-17.
[9] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[10] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[11] 薛明, 吕奔, 邱海波, 杨毅. 中国重症医学质量控制:2024年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 6-10.
[12] 吴骎, 王波, 尹万红, 廖雪莲, 郭军, 陶攀, 康焰. 人工智能爆发增长背景下的重症医学发展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 36-41.
[13] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
[14] 许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.
[15] 马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?