切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (08) : 685 -691. doi: 10.3877/cma.j.issn.1672-6448.2025.08.001

专家共识

胎儿超声产前筛查与诊断切面人工智能质量控制系统专家共识
中华预防医学会出生缺陷预防与控制专业委员会产前超声诊断学组   
  • 收稿日期:2025-07-15 出版日期:2025-08-01
  • 基金资助:
    国家重点研发计划项目(2022YFF0606300)

Expert consensus on artificial intelligence-based quality control system for standardized scan planes in fetal prenatal ultrasound screening and diagnosis

Prenatal Ultrasound Diagnosis Group, Birth Defect Prevention and Control Committee, Chinese Preventive Medicine Association   

  • Received:2025-07-15 Published:2025-08-01
引用本文:

中华预防医学会出生缺陷预防与控制专业委员会产前超声诊断学组. 胎儿超声产前筛查与诊断切面人工智能质量控制系统专家共识[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 685-691.

Prenatal Ultrasound Diagnosis Group, Birth Defect Prevention and Control Committee, Chinese Preventive Medicine Association. Expert consensus on artificial intelligence-based quality control system for standardized scan planes in fetal prenatal ultrasound screening and diagnosis[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(08): 685-691.

图1 人工智能质控系统一般流程
图2 丘脑水平横切面人工智能质控系统示例。图a为待质控丘脑水平横切面;图b为质控过程中的关键结构显示;图c为质控结果及质控总体评价,展示了该质控系统提供的三级评分结论及相关评级依据 注:S为颅骨光环;BM为脑中线;CSP为透明隔腔;T为丘脑;LS为外侧裂;CT为脉络丛
图3 人工智能质控系统实时事中质控一般流程
图4 人工智能质控系统的事后质控一般流程
1
中华医学会超声医学分会妇产超声学组, 国家卫生健康委妇幼司全国产前诊断专家组医学影像组. 超声产前筛查指南 [J]. 中华超声影像学杂志, 2022, 31(1): 12.
2
李胜利. 胎儿畸形产前超声诊断学 [M]. 2版. 北京: 科学出版社, 2017.
3
Salomon LJ, Alfirevic Z, Bilardo CM, et al. ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan [J]. Ultrasound Obstet Gynecol, 2013, 41(1): 102-113.
4
Dong J, Liu S, Liao Y, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J]. IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
5
Welp A, Gembicki M, Dracopoulos C, et al. Applicability of a semiautomated volumetric approach (5D CNS+™) for detailed antenatal reconstruction of abnormal fetal CNS anatomy [J]. BMC Med Imaging, 2022, 22(1): 154.
6
Pu B, Li K, Li S, et al. Automatic fetal ultrasound standard plane recognition based on deep learning and ⅡoT [J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7771-7780.
7
郭文佳, 罗丹丹, 徐荟, 等. 新型智能产前超声技术SFA自动识别与获取胎儿标准切面 [J]. 中国医学影像技术, 2023, 39(1): 65-69.
8
Guo J, Tan G, Wu F, et al. Fetal ultrasound standard plane detection with coarse-to-fine multi-task learning [J]. IEEE J Biomed Health Inform, 2022, 27(10): 5023-5031.
9
Zhao L, Tan G, Pu B, et al. Transfsm: Fetal anatomy segmentation and biometric measurement in ultrasound images using a hybrid transformer [J]. IEEE J Biomed Health Inform, 2023, 28(1): 285-296.
10
Chen X, Xu D, Gu X, et al. Machine learning in prenatal MRI predicts postnatal ventricular abnormalities in fetuses with isolated ventriculomegaly [J]. Eur Radiol, 2024, 34(11): 7115-7124.
11
Athalye C, van Nisselrooij A, Rizvi S, et al. Deep‐learning model for prenatal congenital heart disease screening generalizes to community setting and outperforms clinical detection [J]. Ultrasound Obstet Gynecol, 2024, 63(1): 44-52.
12
谭莹, 文华轩, 彭桂艳, 等. 在线产科超声图像智能质量控制系统的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2022, 19(7): 649.
13
张梅芳, 谭莹, 朱巧珍, 等. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J/OL]. 中华医学超声杂志(电子版), 2023, 20(9): 945-950.
14
余翔, 袁鹰, 李胜利. 产前超声人工智能应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(4): 300-304.
15
Guo W, Li S, Yu X, et al. Artificial intelligence in prenatal ultrasound: clinical application and prospect [J]. Advanced Ultrasound in Diagnosis & Therapy (AUDT), 2023, 7(2): 82-90.
16
冯丽, 吴青青. ISUOG 实践指南 (更新): 早孕期胎儿超声检查解读[J/OL]. 中华医学超声杂志(电子版), 2024, 21(6): 547-551.
17
彭彦卿, 孙立涛. ISUOG 实践指南: 孕晚期胎儿超声检查解读[J/OL]. 中华医学超声杂志(电子版), 2024, 21(6): 552-562.
18
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [DB/OL]. (2020-10-22)[2025-07-15].
19
Liu Y, Tian Y, Zhao Y, et al. Vmamba: Visual state space model [DB/OL]. (2024-01-18)[2025-07-15].
20
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.
21
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation [DB/OL]. (2015-05-18)[2025-07-15].
No related articles found!
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?