切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (08) : 692 -697. doi: 10.3877/cma.j.issn.1672-6448.2025.08.002

专家共识

基于人工智能的超声产前筛查与诊断标准短视频自动获取系统专家共识
中华预防医学会出生缺陷预防与控制专业委员会产前超声诊断学组   
  • 收稿日期:2025-07-15 出版日期:2025-08-01
  • 基金资助:
    国家重点研发计划项目(2022YFF0606300)

Expert consensus on artificial intelligence-based system for automated acquisition of standardized short-video clips in prenatal ultrasound screening and diagnosis

Prenatal Ultrasound Diagnosis Group, Birth Defect Prevention and Control Committee, Chinese Preventive Medicine Association   

  • Received:2025-07-15 Published:2025-08-01
引用本文:

中华预防医学会出生缺陷预防与控制专业委员会产前超声诊断学组. 基于人工智能的超声产前筛查与诊断标准短视频自动获取系统专家共识[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 692-697.

Prenatal Ultrasound Diagnosis Group, Birth Defect Prevention and Control Committee, Chinese Preventive Medicine Association. Expert consensus on artificial intelligence-based system for automated acquisition of standardized short-video clips in prenatal ultrasound screening and diagnosis[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(08): 692-697.

图1 超声产前筛查与诊断标准短视频切面序列图像评估分数动态变化曲线图。假设针对当前切面获取的标准短视频编号为nn-1和n+1则分别对应上一个和下一个对应切面的标准短视频(图中曲线反映不同时刻、连续超声切面序列评估分数的动态变化过程) 注:标准短视频包含连续由非标准切面阶段(图中①对应的区间)序列到基本标准切面阶段(图中②对应的区间)序列,到标准切面阶段(图中③④对应的区间)序列,再至基本标准切面阶段(图中⑤对应的区间)序列,最终至该切面下非标准切面阶段(图中⑥对应的区间)序列,且至少完整覆盖③或④对应的序列短视频
表1 超声产前筛查与诊断标准短视频的15种序列情形
图2 标准短视频获取流程图。切面识别、关键结构检测、切面评分模型为算法训练阶段获取的高性能、轻量化模型
1
中华医学会超声医学分会妇产超声学组, 国家卫生健康委妇幼司全国产前诊断专家组医学影像组.超声产前筛查指南 [J].中华超声影像学杂志, 2022, 31(1): 12.
2
李胜利. 胎儿畸形产前超声诊断学 [M]. 2版. 北京: 科学出版社, 2017.
3
中华医学会超声医学分会超声心动图学组. 中国胎儿超声心动图检查规范 [J]. 中华超声影像学杂志, 2015, 24(11): 921-926.
4
Pu B, Li K, Li S, et al. Automatic fetal ultrasound standard plane recognition based on deep learning and ⅡoT [J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7771-7780.
5
谭莹, 文华轩, 彭桂艳, 等. 在线产科超声图像智能质量控制系统的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2022, 19(7): 649.
6
张梅芳, 谭莹, 朱巧珍, 等. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J/OL]. 中华医学超声杂志(电子版), 2023, 20(9): 945-950.
7
余翔, 袁鹰, 李胜利. 产前超声人工智能应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(4): 300-304.
8
Guo W, Li S, Yu X, et al. Artificial intelligence in prenatal ultrasound: clinical application and prospect [J]. Advanced Ultrasound in Diagnosis & Therapy (AUDT), 2023, 7(2): 82-90.
9
郭文佳, 罗丹丹, 徐荟, 等.新型智能产前超声技术SFA自动识别与获取胎儿标准切面 [J].中国医学影像技术, 2023, 39(1): 65-69.
10
Pu B, Li K, Chen J, et al. HFSCCD: a hybrid neural network for fetal standard Cardiac cycle detection in ultrasound videos [J]. IEEE J Biomed Health Inform, 2024, 28(5): 2943-2954.
11
Zhang B, Liu H, Luo H, et al. Automatic quality assessment for 2D fetal sonographic standard plane based on multitask learning [J]. Medicine (Baltimore), 2021, 100(4): e24427.
12
Płotka S, Włodarczyk T, Klasa A, et al. FetalNet: multi-task deep learning framework for fetal ultrasound biometric measurements[DB/OL]. (2021-07-14)[2025-07-15].
13
Lu Y, Huang X, Dai Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT [J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 4177-4186.
14
Yu X, Wang J, Hong QQ, et al. Transfer learning for medical images analyses: A survey [J]. Neurocomputing, 2022, 489: 230-254.
15
Zhou DW, Wang QW, Qi ZH, et al. Class-incremental learning: A survey[DB/OL]. (2024-07-15)[2025-07-15].
16
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[DB/OL]. (2018-01-28)[2025-07-15].
17
Tan M, Le Q. EffientNet: Rethinking model scaling for convolutional neural networks[DB/OL]. (2019-05-28)[2025-07-15].
18
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [DB/OL]. (2020-10-22)[2025-07-15].
19
樊荣荣, 施晓雷, 孙安, 等. 人工智能在住院医师规范化培养中的应用价值探讨 [J]. 肿瘤影像学, 2018, 27(4): 261-264.
No related articles found!
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?