切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (10) : 944 -954. doi: 10.3877/cma.j.issn.1672-6448.2025.10.007

头颈部超声影像学

TCS-MR融合成像揭示帕金森病黑质高回声的空间分布特征
侯超1,2, 夏纪筑1, 李明星1,(), 何文2, 张巍2   
  1. 1 646000 泸州,西南医科大学附属医院超声医学科
    2 100071 首都医科大学附属北京天坛医院超声医学科
  • 收稿日期:2025-05-14 出版日期:2025-10-01
  • 通信作者: 李明星
  • 基金资助:
    四川省科技计划项目(2025ZNSFSC1753); 泸州市科技计划项目(2024JYJ047)

Transcranial sonography-magnetic resonance fusion imaging reveals spatial characteristics of substantia nigra hyperechogenicity in Parkinson's disease

Chao Hou1,2, Jizhu Xia2, Mingxing Li1,(), Wen He2, Wei Zhang2   

  1. 1 Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
    2 Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
  • Received:2025-05-14 Published:2025-10-01
  • Corresponding author: Mingxing Li
引用本文:

侯超, 夏纪筑, 李明星, 何文, 张巍. TCS-MR融合成像揭示帕金森病黑质高回声的空间分布特征[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 944-954.

Chao Hou, Jizhu Xia, Mingxing Li, Wen He, Wei Zhang. Transcranial sonography-magnetic resonance fusion imaging reveals spatial characteristics of substantia nigra hyperechogenicity in Parkinson's disease[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(10): 944-954.

目的

应用经颅超声(TCS)-磁共振(MR)融合成像分析帕金森病(PD)黑质高回声(SNH)的空间分布特征。

方法

前瞻性纳入2023年11月至2024年10月在首都医科大学附属北京天坛医院住院的PD患者,所有患者行TCS-MR融合成像。融合图像分析时选择红核最大面积所在平面、SNH最大面积所在平面及红核刚好显示不清的平面,分别命名为黑质平面1、黑质平面2、黑质平面3,采用ImageJ依据坐标位置关系勾画感兴趣区域,对SNH所在核团进行标记,计算各感兴趣区域的灰度及像素值,并分析SNH的空间分布特征。

结果

共纳入164例PD患者,平均年龄(63.70±7.65)岁,男性占65.24%(107/164)。融合成像发现PD的SNH可延伸至黑质以外的中脑核团,包括黑质背侧带、红核及腹侧被盖区。在109例左侧SNH中,18例仅位于黑质内,17例仅位于黑质背侧带,余74例均累及2个及以上核团。在79例右侧SNH中,18例位于黑质,15例位于黑质背侧带,46例累及2个及以上核团。同时,SNH存在内外(黑质高回声的长径平行于黑质长轴)及前后(黑质高回声的长径垂直于黑质长轴)两种延伸方向。左侧SNH呈内外方向延伸者66例,前后方向延伸者43例;右侧SNH内外方向延伸者62例,前后方向者17例;左侧SNH前后方向延伸者较内外方向延伸者年龄更小、病程更长、Hoehn-Yahr分级更高、第三脑室更窄、SNH面积更大、姿势不稳占比更多(P<0.05),同时两种延伸方向的受累核团及头尾侧分布差异明显(P<0.001)。

结论

PD的SNH可延伸至黑质以外的中脑核团,且存在内外和前后两种延伸方向,前后方向延伸的左侧SNH可能反映了更严重的疾病状态。

Objective

To explore the spatial characteristics of substantia nigra hyperechogenicity (SNH) in Parkinson's disease (PD) via transcranial sonography (TCS)-magnetic resonance (MR) fusion imaging.

Methods

Inpatients who were diagnosed with PD in Beijing Tiantan Hospital, Capital Medical University and underwent TCS-MR fusion imaging were prospectively enrolled from November 2023 to October 2024. For fusion images, three dual-sided planes were selected: substantia nigra (SN) 1 (the plane with the largest area of the red nucleus), SN2 (the plane with the largest area of SNH), and SN3 (the plane where the red nucleus is just out of view). ImageJ was used to outline the regions of interest (ROIs) on the fusion images based on the spatial relationships of the coordinates. We recorded the location of SNH in nuclei, calculated echogenicity and pixel values for each ROI, and analyzed the spatial features of SNH.

Results

A total of 164 patients [average age (63.70 ± 7.65) years; 65.24% (107/164) male] with PD were included. SNH could be observed in nuclei beyond the SN, including the red nuclei, the dorsal band of the SN, and the ventral tegmental area. Among 109 cases of left-sided SNH, 18 were localized solely within the SN, 17 were found in the dorsal band of the SN, and the remaining 74 involved at least two nuclei. Conversely, on the right side, 18 out of 79 SNH cases were situated in the SN, 15 in the dorsal band of the SN, and 46 involved two or more nuclei. Two orientations of SNH were identified: medial-lateral (where the long diameter of the SNH is parallel to the long axis of the SN) and anterior-posterior (where the long diameter of the SNH is perpendicular to the long axis of the SN). A total of 66 cases of left SNH exhibited a medial-lateral orientation, while 43 followed an anterior-posterior orientation. On the right side, 62 cases showed a medial-lateral orientation, and 17 were oriented anterior-posteriorly. Compared to those with a medial-lateral orientation, the left SNH cases with an anterior-posterior orientation were characterized by younger age, longer disease duration, higher Hoehn-Yahr stage, narrower third ventricular width, larger SNH area, and a greater proportion of postural instability (P<0.05). Additionally, statistically significant differences were observed in the caudal and rostral distribution, as well as in the nuclei distribution of SNH between the two orientations (P<0.001).

Conclusion

In PD, SNH can extend beyond the SN and has two orientations: medial-lateral and anterior-posterior. The anterior-posterior orientation of the left SNH may reflect a more severe disease state.

图1 经颅超声-功能磁共振(TCS-MR)融合成像中位置配准示例。图a~b示侧脑室平面;图c~d示第三脑室平面;图e~f示中脑平面;图g~h示大脑中动脉平面(黑、白及红箭头分别示MRI、TCS及叠加图像中的匹配结构)
图2 患者纳入流程图 注:MRI为磁共振成像;TCS为经颅超声;PD为帕金森病;TCS-MR为经颅超声-磁共振
图3 融合成像流程及感兴趣区域分割示例 注:MRI为磁共振成像;TCS为经颅超声;SN为黑质
表1 帕金森病患者双侧融合成像参数对比
图4 黑质高回声(SNH)与核团定位示例。图a~e示SNH位于左侧黑质内;图f~j示SNH位于左侧黑质及黑质背侧带(黄色箭头示SNH,黄色及红色ROI分别示黑质和红核,蓝色及粉色ROI分别示黑质内及黑质背侧带的高回声)
图5 黑质高回声(SNH)的延伸方向示例。图a~d为SNH沿内外方向延伸;图e~h为SNH沿前后方向延伸(图a和e为融合图像,图b和f为融合叠加图像,图c和g为经颅超声图像的局部放大图,图d和h为两种延伸方向的示意图,黄色箭头示SNH)
表2 左侧黑质高回声两种延伸方向比较
参数 内外方向(n=66) 前后方向(n=43) 统计值 P
性别,男[例(%)] 51(77.27) 28(65.12) χ2=1.93 0.192
年龄(岁,
±s
65.62±8.51 61.74±9.77 t=2.19 0.031
病程(年,
±s
7.33±4.40 10.12±6.64 t=2.64 0.018
Hoehn-Yahr分级(
±s
2.77±0.76 3.12±0.80 t=2.31 0.023
UPDRS-Ⅲ评分(
±s
40.02±14.72 42.67±18.92 t=0.82 0.416
震颤[例(%)] 56(84.85) 35(81.40) χ2=0.23 0.793
运动迟缓[例(%)] 62(93.94) 42(97.67) χ2=0.83 0.650
僵直[例(%)] 47(71.21) 28(65.12) χ2=0.45 0.531
姿势不稳[例(%)] 47(71.21) 39(90.70) χ2=5.94 0.017
排尿困难[例(%)] 43(65.15) 24(55.81) χ2=0.96 0.421
便秘[例(%)] 57(86.36) 35(81.40) χ2=0.49 0.591
直立性低血压[例(%)] 24(36.36) 19(44.19) χ2=0.67 0.430
睡眠障碍[例(%)] 48(72.72) 33(76.74) χ2=0.22 0.662
焦虑[例(%)] 38(57.58) 21(48.84) χ2=0.80 0.433
抑郁[例(%)] 31(46.97) 19(44.19) χ2=0.08 0.845
嗅觉减退[例(%)] 39(59.09) 19(44.19) χ2=2.32 0.169
第三脑室宽度(mm,
±s
5.33±1.63 4.69±1.50 t=2.07 0.041
左侧SNH面积(cm2
±s
0.26±0.15 0.32±0.10 t=2.44 0.016
左侧SN1像素(
±s
1181.21±190.93 1261.47±297.28 t=1.72 0.089
左侧SN1灰度(
±s
27.00±6.15 29.06±5.70 t=1.79 0.077
左侧SN2像素(
±s
1170.42±195.16 1243.98±310.83 t=1.51 0.134
左侧SN2灰度(
±s
27.52±6.56 29.98±8.20 t=1.73 0.087
左侧SN3像素(
±s
1058.58±183.79 1138.07±246.86 t=1.81 0.074
左侧SN3灰度(
±s
26.63±12.21 28.03±12.46 t=0.58 0.564
左侧SNH像素(
±s
539.59±322.67 728.70±293.80 t=3.16 0.002
左侧SNH灰度(
±s
52.12±21.01 51.59±15.31 t=0.15 0.878
头/尾侧[例(%)] - <0.001
头侧 40(60.61) 11(25.58)a
尾侧 6(9.09) 3(6.98)
均有 20(30.30) 29(67.44)a
受累核团[例(%)] - <0.001
仅黑质 14(21.21) 4(9.30)
仅黑质背侧带 16(24.24) 1(2.33)a
黑质、黑质背侧带 26(36.36) 31(72.09)a
黑质、红核 3(4.54) 0
黑质、红核、黑质背侧带 6(9.09) 7(16.28)
黑质、腹侧被盖区 1(1.52) 0
表3 右侧黑质高回声两种延伸方向比较
参数 内外方向(n=62) 前后方向(n=17) 统计值 P
性别,男[例(%)] 42(67.7) 14(82.4) - 0.367
年龄(岁,
±s
63.42±9.23 64.76±7.85 t=0.55 0.585
病程(年,
±s
8.61±6.14 6.77±2.63 t=1.20 0.072
Hoehn-Yahr分级(
±s
0.94±0.91 2.71±0.59 t=1.01 0.314
UPDRS-III评分(
±s
40.43±17.69 34.88±16.89 t=1.16 0.252
震颤[例(%)] 55(88.7) 9(52.9) - 0.003
运动迟缓[例(%)] 59(95.2) 16(94.1) - 1.000
僵直[例(%)] 43(69.4) 13(76.5) - 0.765
姿势不稳[例(%)] 50(80.6) 15(88.2) - 0.722
排尿困难[例(%)] 34(54.8) 12(70.6) χ2=1.36 0.280
便秘[例(%)] 52(83.9) 16(94.1) - 0.440
直立性低血压[例(%)] 26(41.9) 10(58.8) χ2=1.53 0.275
睡眠障碍[例(%)] 45(72.6) 11(64.7) - 0.556
焦虑[例(%)] 33(53.2) 8(47.1) χ2=0.20 0.652
抑郁[例(%)] 31(50.0) 4(23.5) χ2=3.78 0.060
嗅觉减退[例(%)] 34(54.8) 9(52.9) χ2=0.02 1.000
右侧SNH面积(cm2
±s
0.20±0.13 0.28±0.13 t=2.30 0.024
右侧SN1像素(
±s
1155.15±228.95 1223.47±284.50 t=1.03 0.305
右侧SN1灰度(
±s
20.69±8.84 27.65±11.60 t=2.68 0.009
右侧SN2像素(
±s
1147.05±239.50 1174.06±271.24 t=0.40 0.391
右侧SN2灰度(
±s
21.38±9.30 29.17±8.82 t=3.09 0.003
右侧SN3像素(
±s
1075.03±215.76 1019.18±152.33 t=1.00 0.321
右侧SN3灰度(
±s
21.35±8.62 31.13±14.02 t=3.58 0.001
右侧SNH像素(
±s
381.15±245.63 510.35±245.97 t=1.92 0.058
右侧SNH灰度(
±s
51.24±20.29 56.56±15.26 t=1.00 0.319
头/尾侧[例(%)] - 0.016
头侧 45(72.6) 6(35.3)
尾侧 2(3.2) 1(5.9)
均有 15(24.2) 10(58.8)
受累核团[例(%)] - 0.078
仅黑质 15(24.2) 3(17.6)
仅黑质背侧带 15(24.2)a 0
黑质、黑质背侧带 22(35.5) 9(52.9)
黑质、红核 2(3.2) 0
黑质、红核、黑质背侧带 4(6.4) 2(11.8)
黑质、黑质背侧带、腹侧被盖区 0 1(5.9)
黑质、腹侧被盖区 1(1.6) 0
红核、黑质背侧带 2(3.2) 1(5.9)
黑质、红核、黑质背侧带、腹侧被盖区 1(1.6) 1(5.9)
1
Su D, Cui Y, He C, et al. Projections for prevalence of Parkinson's disease and its driving factors in 195 countries and territories to 2050: modelling study of Global Burden of Disease Study 2021[J]. BMJ, 2025, 388: e080952.
2
Xu T, Dong W, Liu J, et al. Disease burden of Parkinson's disease in China and its provinces from 1990 to 2021: findings from the global burden of disease study 2021[J]. Lancet Reg Health West Pac, 2024, 46: 101078.
3
中国医师协会超声医师分会, 张巍, 侯超, 何文. 帕金森病经颅超声检查中国指南[J]. 中国医学影像技术, 2025, 41(2): 177-185.
4
Wang LS, Yu TF, Chai B, et al. Transcranial sonography in differential diagnosis of Parkinson disease and other movement disorders[J]. Chin Med J (Engl), 2021, 134(14): 1726-1731.
5
Hou C, Yang F, Li S, et al. A nomogram based on neuron-specific enolase and substantia nigra hyperechogenicity for identifying cognitive impairment in Parkinson's disease[J]. Quant Imaging Med Surg, 2024, 14(5): 3581-3592.
6
Ahmadi SA, Bötzel K, Levin J, et al. Analyzing the co-localization of substantia nigra hyper-echogenicities and iron accumulation in Parkinson's disease: A multi-modal atlas study with transcranial ultrasound and MRI[J]. NeuroImage Clin, 2020, 26: 102185.
7
Biondetti E, Santin MD, Valabregue R, et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease[J]. Brain, 2021, 144(10): 3114-3125.
8
Damier P, Hirsch EC, Agid Y, et al. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease[J]. Brain, 1999, 122(Pt 8): 1437-1448.
9
Skoloudik D, Maskova J, Dusek P, et al. Digitized image analysis of insula echogenicity detected by TCS-MR fusion imaging in Wilson's and early-onset Parkinson's diseases[J]. Ultrasound Med Biol, 2020, 46(3): 842-848.
10
中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍专业委员会. 中国帕金森病的诊断标准(2016版)[J]. 中华神经科杂志, 2016, 49(4): 268-271.
11
Hou C, Zhang W, Li FX, et al. Association between third ventricular width assessed by transcranial sonography and plasma homocysteine in Parkinson's disease with cognitive impairment and their potential to predict conversion to dementia[J]. Quant Imaging Med Surg, 2025, 15(4): 3322-3332.
12
Hou C, Zhang W, Li HB, et al. Spatial variations and precise location of substantia nigra hyperechogenicity in Parkinson's disease using TCS-MR fusion imaging[J]. NPJ Parkinsons Dis, 2025, 11(1): 78.
13
Kozel J, Skoloudik D, Ressner P, et al. Echogenicity of brain structures in Huntington's disease patients evaluated by transcranial sonography - magnetic resonance fusion imaging using virtual navigator and digital image analysis[J]. Ultraschall Med, 2023, 44(5): 495-502.
14
Lee H, Cho H, Lee MJ, et al. Differential effect of iron and myelin on susceptibility MRI in the substantia nigra[J]. Radiology, 2021, 301(3): 682-691.
15
Bazot M, Spagnoli F, Guerriero S. Magnetic resonance imaging and ultrasound fusion technique in gynecology[J]. Ultrasound Obstet Gynecol, 2022, 59(2): 141-145.
16
Lin Y, Yilmaz EC, Belue MJ, et al. Evaluation of a cascaded deep learning-based algorithm for prostate lesion detection at biparametric MRI[J]. Radiology, 2024, 311(2): e230750.
17
Wu DF, He W, Lin S, et al. Using real-time fusion imaging constructed from contrast-enhanced ultrasonography and magnetic resonance imaging for high-grade glioma in neurosurgery[J]. World Neurosurg, 2019, 125: e98-e109.
18
Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity[J]. Brain, 1991, 114(Pt 5): 2283-2301.
19
Haber SN, Fudge JL, Mcfarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum[J]. J Neurosci, 2000, 20(6): 2369-2382.
20
Haber SN. The place of dopamine in the cortico-basal ganglia circuit[J]. Neuroscience, 2014, 282: 248-257.
21
Fiorenzato E, Antonini A, Bisiacchi P, et al. Asymmetric dopamine transporter loss affects cognitive and motor progression in Parkinson's disease[J]. Mov Disord, 2021, 36(10): 2303-2313.
22
Iranzo A, Stefani A, Ninerola-Baizan A, et al. Left-hemispheric predominance of nigrostriatal deficit in isolated REM sleep behavior disorder[J]. Neurology, 2020, 94(15): e1605-e1613.
23
Ocklenburg S, Mundorf A, Gerrits R, et al. Clinical implications of brain asymmetries[J]. Nat Rev Neurol, 2024, 20(7): 383-394.
24
Djaldetti R, Ziv I, Melamed E. The mystery of motor asymmetry in Parkinson's disease[J]. Lancet Neurol, 2006, 5(9): 796-802.
[1] 王颉, 陈明亮, 谷成毅, 柳金浪, 段志豪, 蔡相权, 徐智璇, 徐留海, 田志鹏, 周游. MRI评估慢性踝关节不稳患者轴位像距骨和腓骨位置[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 315-322.
[2] 刘赛, 廖怡, 贾凤林, 李学胜, 马鑫茂, 李珮, 宁刚, 曲海波. MRI磁化准备快速采集梯度回波序列对儿童脑发育的定量评估作用[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 411-419.
[3] 翟羽翔, 陈仁吉. 语音治疗对非综合征型唇腭裂言语障碍患者大脑神经网络影响的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 418-423.
[4] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[5] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[6] 李健文, 陈莹, 陈羲, 宗晓丹. 钆塞酸二钠增强MRI在高分化小肝癌和不典型增生结节鉴别诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 875-881.
[7] 鲁莽, 马晓璐, 沈浮, 王颢, 邵成伟, 张卫, 陆建平, 陆海迪. 基于磁共振的深度学习重建方法在直肠癌术前评估中的应用研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 445-456.
[8] 袁瑛, 徐超, 崔砚, 徐江, 徐如祥. 植入式自适应深部脑刺激在帕金森病治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 193-198.
[9] 信连昌, 王景景, 符锋. 神经调控技术在难治性癫痫治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 238-245.
[10] 甄雪克. 原发性帕金森病的诊疗进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 191-192.
[11] 何源青, 郭雷明, 冯佩, 马春宁, 岳欣. 钆塞酸二钠增强MRI多模态参数与原发性肝癌患者病情程度的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 317-325.
[12] 刘麒, 陈萍, 曹筱璇, 周梅, 张斌强, 朱文博. 幽门螺杆菌感染对帕金森病患者疾病进展及外周炎症因子、凝血功能指标特征的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 262-266.
[13] 周志艺, 杨芷怡, 严俊, 赵雪飘, 曲云, 岳永飞. 胎盘体积、胎盘面积和宫颈长度预测胎盘植入的价值[J/OL]. 中华产科急救电子杂志, 2025, 14(03): 167-172.
[14] 张双, 樊清语, 田雅乐, 柏福运, 贾岩龙. 肝脏乏脂肪型血管周上皮样细胞肿瘤的影像学特征[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 97-102.
[15] 王思泽, 王春梅. Wnt/β-连环素信号通路在中枢神经系统疾病中的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 133-139.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?