切换至 "中华医学电子期刊资源库"
综述

超声心动图的人工智能时代

  • 赵嘉欣 ,
  • 穆玉明 , 1,
展开
  • 1.831100 乌鲁木齐,新疆医科大学第一附属医院心脏超声诊断科
通信作者:穆玉明,Email:

Copy editor: 汪荣

收稿日期: 2023-02-21

  网络出版日期: 2024-03-05

版权

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计,除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。本刊为电子期刊,以网刊形式出版。

Echocardiography in the era of artificial intelligence

  • Jiaxin Zhao ,
  • Yuming Mu ,
Expand

Received date: 2023-02-21

  Online published: 2024-03-05

Copyright

Copyright by Chinese Medical Association No content published by the journals of Chinese Medical Association may be reproduced or abridged without authorization. Please do not use or copy the layout and design of the journals without permission. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Medical Association or the Editorial Board, unless this is clearly specified.

摘要

人工智能(artificial intelligence,AI)概念自1950年提出至今,在各领域的进展迅速,极大地改变着人们的生活。随着在心血管领域的价值不断被挖掘,AI从成像解释到临床决策得到不同程度的应用。目前,多种成像方式中心脏超声成像因具有便携、实时、成本低等诸多优点而得到临床广泛认可,成为心脏疾病诊疗过程中不可替代的工具。然而,由于心脏所处的解剖位置特殊、检查过程中节律性跳动以及操作人员专业知识水平不同,心脏超声在成像质量和测量重复性方面受到限制。近年来,AI与心脏超声的融合发展在数据处理、图像识别、超声心动图诊断及预后评价等方面表现出明显优势。本文就AI的概念以及其在心脏超声领域中的应用进展进行综述,并对其目前发展的局限性进行分析。

本文引用格式

赵嘉欣 , 穆玉明 . 超声心动图的人工智能时代[J]. 中华医学超声杂志(电子版), 2023 , 20(12) : 1308 -1311 . DOI: 10.3877/cma.j.issn.1672-6448.2023.12.016

1
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine [J]. Gastrointest Endosc, 2020, 92(4): 807-812.

2
Zhou J, Du M, Chang S, et al. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis [J]. Cardiovasc Ultrasound, 2021, 19(1): 1-11.

3
Deshmukh R, Rathi P. Artificial intelligence in medicine [J]. J Assoc Physicians India, 2022, 70(3): 11-12.

4
Koulaouzidis G, Jadczyk T, Iakovidis DK, et al. Artificial intelligence in cardiology-A narrative review of current status [J]. J Clin Med, 2022, 11(13): 3910-3913.

5
Suzuki K. Machine learning in medical imaging before and after introduction of deep learning [J]. J Med Imag Health In, 2017, 34(2): 14-24.

6
Narang A, Bae R, Hong H, et al. Acquisition of diagnostic echocardioimagedata images by novices using a deep learning based image guidance algorithm [J]. JAMA Cardiol, 2021, 6(6): 624-632.

7
Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning [J]. NPJ Digit Med, 2018, 1(1): 1-8.

8
Ostvik A, Smistad E, Aase SA, et al. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks [J]. Ultrasound Med Biol, 2019, 45(2): 374-384.

9
Al Kindi D, Househ M, Alam T, et al. Artificial intelligence models for heart chambers segmentation from 2D echocardioimagedata images: a scoping review [J]. Stud Health Technol Inform, 2022, 289: 264-267.

10
Arafati A, Morisawa D, Avendi MR, et al. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks [J]. J R Soc Interface, 2020, 17(169): 20200267.

11
Painchaud N, Duchateau N, Bernard O, et al. Echocardiography segmentation with enforced temporal consistency [J]. IEEE Trans Med Imaging, 2022, 41(10): 2867-2878.

12
Gandhi S, Mosleh W, Shen J, et al. Automation, machine learning, and artificial intelligence in echocardiography: A brave new world [J]. Echocardiography, 2018, 35(9): 1402-1418.

13
Medvedofsky D, Mor-Avi V, Kruse E, et al. Quantification of right ventricular size and function from contrast-enhanced three-dimensional echocardioimagedata images [J]. J Am Soc Echocardiogr, 2017, 30(12): 1193-1202.

14
Nochioka K, Roca GQ, Claggett B, et al. Right ventricular function, right ventricular-pulmonary artery coupling, and heart failure risk in 4 US communities The Atherosclerosis Risk in Communities (ARIC) Study [J]. JAMA Cardiol, 2018, 3(10): 939-948.

15
Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardioimagedata quantification of right ventricular size and function: validation against cardiac magnetic resonance [J]. J Am Soc Echocardiogr, 2019, 32(8): 969-977.

16
Zhu Y, Bao YW, Zheng KC, et al. Quantitative assessment of right ventricular size and function with multiple parameters from artificial intelligence-based three-dimensional echocardiography: A comparative study with cardiac magnetic resonance [J]. Echocardiography, 2022, 39(2): 223-232.

17
Schneider M, Bartko P, Geller W, et al. A machine learning algorithm supports ultrasound-naive novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF [J]. Int J Cardiovasc Imaging, 2021, 37(2): 577-586.

18
Asch FM, Poilvert N, Abraham T, et al. Automated echocardioimagedata quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert [J]. Circ Cardiovasc Imaging, 2019, 12(9): e009303.

19
Lang R, Badano L, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J]. J Am Soc Echocardiogr, 2015, 28(1): 1-39.

20
Salte IM, Ostvik A, Smistad E, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography [J]. JACC Cardiovasc Imaging, 2021, 14(10): 1918-1928.

21
Karuzas A, Sablauskas K, Verikas D, et al. Accurate prediction of left ventricular diastolic dysfunction in 2D echocardiography using ensemble of deep convolutional neural networks [J]. Eur Heart J, 2020, 41(2): 3436.

22
Jiang R, Yeung D, Behnami D, et al. A novel continuous left ventricular diastolic function score using machine learning [J]. J Am Soc Echocardiogr, 2022, 35(12): 1247-1255.

23
Choi DJ, Park JJ, Ali T, et al. Artificial intelligence for the diagnosis of heart failure [J]. NPJ Digit Med, 2020, 3(54): 1-6.

24
Nedadur R, Wang B, Tsang W. Artificial intelligence for the echocardioimagedata assessment of valvular heart disease [J]. Heart, 2022, 108(20): 1592-1599.

25
Chandra V, Sarkar PG, Singh V. Mitral valve leaflet tracking in echocardiography using custom Yolo3 [J]. Procedia Computer Sci, 2020, 171(12): 820-828.

26
Sengupta PP, Shrestha S, Kagiyama N, et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity [J]. JACC Cardiovasc Imaging, 2021, 14(9): 1707-1720.

27
Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos [J]. Comput Biol Med, 2016, 73(1): 47-55.

28
Yu F, Huang HB, Yu QH, et al. Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy [J]. Ann Transl Med, 2021, 9(2): 108-126.

29
Duffy G, Cheng PP, Yuan N, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning [J]. JAMA Cardiol, 2022, 7(4): 386-395.

30
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy [J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330.

31
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardioimagedata images [J]. JACC Cardiovasc Imaging, 2020, 13(2): 374-381.

32
Omar HA, Domingos JS, Patra A, et al. Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) [C]. Washington DC, 2018.

33
Li M, Zeng D, Xie Q, et al. A deep learning approach with temporal consistency for automatic myocardial segmentation of quantitative myocardial contrast echocardiography [J]. Int J Cardiovas Imaging, 2021, 37(6): 1967-1978.

34
Tian M, Zheng M, Qiu S, et al. A prediction model of microcirculation disorder in myocardium based on ultrasonic images [J]. J Amb Intel Hum Comp, 2023, 14(6): 7319-7330.

35
刘梦怡, 吴伟春. 人工智能在超声心动图中的应用现状及进展 [J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 216-219.

文章导航

/