| 1 | Korde LA, Somerfield MR, Carey LA, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline [J]. J Clin Oncol, 2021, 39(13): 1485-1505. | 
																													
																							| 2 | Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant Chemotherapy and impact on breast cancer recurrence and survival: A comprehensive meta-analysis [J]. Clin Cancer Res, 2020, 26(12): 2838-2848. | 
																													
																							| 3 | 《中国乳腺癌新辅助治疗专家共识(2022年版)》专家组. 中国乳腺癌新辅助治疗专家共识(2022年版) [J]. 中国癌症杂志, 2022, 32 (1): 80-89. | 
																													
																							| 4 | Croshaw R, Shapiro-Wright H, Svensson E, et al. Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients [J]. Ann Surg Oncol, 2011, 18(11): 3160-3163. | 
																													
																							| 5 | Shi Z, Huang X, Cheng Z, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to Neoadjuvant chemotherapy in breast cancer [J]. Radiology, 2023, 308(1): e222830. | 
																													
																							| 6 | Pesapane F, Agazzi GM, Rotili A, et al. Prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients with MRI-radiomics: A systematic review and meta-analysis [J]. Curr Probl Cancer, 2022, 46(5): 100883. | 
																													
																							| 7 | Granzier RWY, van Nijnatten TJA, Woodruff HC, et al. Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review [J]. Eur J Radiol, 2019, 121: 108736. | 
																													
																							| 8 | Fayanju OM, Ren Y, Thomas SM, et al. The clinical significance of breastonly and node-only pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT): a review of 20,000 breast cancer patients in the National Cancer Data Base (NCDB) [J]. Ann Surg, 2018, 268(4): 591-601. | 
																													
																							| 9 | Romeo V, Accardo G, Perillo T, et al. Assessment and prediction of response to neoadjuvant chemotherapy in breast cancer: A comparison of imaging modalities and future perspectives [J]. Cancers (Basel), 2021, 13(14): 3521. | 
																													
																							| 10 | Zardavas D, Irrthum A, Swanton C, et al. Clinical management of breast cancer heterogeneity [J]. Nat Rev Clin Oncol, 2015, 12(7): 381-394. | 
																													
																							| 11 | Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression [J]. Br J Cancer, 2021, 125(2): 164-175. | 
																													
																							| 12 | Wu J, Cao G, Sun X, et al. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy [J]. Radiology, 2018, 288 (1): 26-35. | 
																													
																							| 13 | Su GH, Xiao Y, You C, et al. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets [J]. Sci Adv, 2023, 9(40): eadf0837. | 
																													
																							| 14 | Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics [J]. J Nucl Med, 2020, 61(4): 488-495. | 
																													
																							| 15 | 陈瑾, 王海屹, 叶慧义. 纹理分析在肿瘤影像学中的研究进展 [J].中华放射学杂, 2017, 51(12): 979-982. | 
																													
																							| 16 | Choi HJ, Ryu JM, Kim I, et al. Nomogram for accurate prediction of breast and axillary pathologic response after neoadjuvant chemotherapy in node positive patients with breast cancer [J]. Ann Surg Treat Res, 2019, 96(4): 169-176. | 
																													
																							| 17 | Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer [J]. Eur J Cancer, 2021, 147: 95-105. |