1 |
Hjortrup PB, Haase N, Bundgaard H, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial[J]. Intensive Care Med, 2016, 42(11): 1695-1705.
|
2 |
Sanfilippo F, Messina A, Cecconi M, et al. Ten answers to key questions for fluid management in intensive care[J]. Med Intensiva (Engl Ed), 2021, 45(9): 552-562.
|
3 |
Dhondup T, Tien JC, Marquez A, et al. Association of negative fluid balance during the de-escalation phase of sepsis management with mortality: A cohort study[J]. J Crit Care, 2020, 55: 16-21.
|
4 |
Grant E, Rendano F, Sevinc E, et al. Normal inferior vena cava: caliber changes observed by dynamic ultrasound[J]. AJR Am J Roentgenol, 1980, 135(2): 335-338.
|
5 |
Kim DW, Chung S, Kang WS, et al. Diagnostic accuracy of ultrasonographic respiratory variation in the inferior vena cava, subclavian vein, internal jugular vein, and femoral vein diameter to predict fluid responsiveness: a systematic review and meta-analysis[J]. Diagnostics(Basel), 2021, 12(1): 49.
|
6 |
Pasquero P, Albani S, Sitia E, et al. Inferior vena cava diameters and collapsibility index reveal early volume depletion in a blood donor model[J]. Crit Ultrasound J, 2015, 7(1): 17.
|
7 |
Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers[J]. Acad Emerg Med, 2010, 17(1): 96-99.
|
8 |
Sanfilippo F, La Via L, Dezio V, et al. Assessment of the inferior vena cava collapsibility from subcostal and trans-hepatic imaging using both M-mode or artificial intelligence: a prospective study on healthy volunteers[J]. Intensive Care Med Exp, 2023, 11(1): 15.
|
9 |
Finnerty NM, Panchal AR, Boulger C, et al. Inferior vena cava measurement with ultrasound: what is the best view and best mode?[J]. West J Emerg Med, 2017, 18(3): 496-501.
|
10 |
Blehar DJ, Resop D, Chin B, et al. Inferior vena cava displacement during respirophasic ultrasound imaging[J]. Crit Ultrasound J, 2012, 4(1): 18.
|
11 |
Via G, Tavazzi G, Price S. Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view[J]. Intensive Care Med, 2016, 42(7): 1164-1167.
|
12 |
Maury E, Offenstadt G. Sonographic assessment of abdominal vein dimensional and hemodynamic changes induced in human volunteers by a model of abdominal hypertension [J]. Crit Care Med, 2011, 39(8): 2017.
|
13 |
Bauman Z, Coba V, Gassner M, et al. Inferior vena cava collapsibility loses correlation with internal jugular vein collapsibility during increased thoracic or intra-abdominal pressure[J]. J Ultrasound, 2015, 18(4): 343-348.
|
14 |
Weekes AJ, Lewis MR, Kahler ZP, et al. The effect of weight-based volume loading on the inferior vena cava in fasting subjects: a prospective randomized double-blinded trial [J]. Acad Emerg Med, 2012, 19(8): 901-907.
|
15 |
Kutty S, Li L, Hasan R, et al. Systemic venous diameters, collapsibility indices, and right atrial measurements in normal pediatric subjects[J]. J Am Soc Echocardiogr, 2014, 27(2): 155-162.
|
16 |
Mugloo MM, Malik S, Akhtar R. Echocardiographic inferior vena cava measurement as an alternative to central venous pressure measurement in neonates[J]. Indian J Pediatr, 2017, 84(10): 751-756.
|
17 |
Babaie S, Behzad A, Mohammadpour M, et al. A Comparison between the bedside sonographic measurements of the inferior vena cava indices and the central venous pressure while assessing the decreased intravascular volume in children[J]. Adv Biomed Res, 2018, 7: 97.
|
18 |
Heazell A, Li M, Budd J, et al. Association between maternal sleep practices and late stillbirth-findings from a stillbirth case-control study[J]. BJOG, 2018, 125(2): 254-262.
|
19 |
Ormesher L, Catchpole J, Peacock L, et al. The effect of prone positioning on maternal haemodynamics and fetal wellbeing in the third trimester–A primary cohort study with a scoping review[J]. PLoS One, 2023, 18(10): e0287804.
|
20 |
高娇娇, 李晓红, 陶静, 等. 超声测量下腔静脉塌陷指数在评估危重症产妇麻醉前血容量中的应用[J]. 中华全科医学, 2023, 21(7): 1125-1129.
|
21 |
Elbadry AA, El Dabe A, Abu Sabaa MA. Pre-operative ultrasonographic evaluation of the internal jugular vein collapsibility index and inferior vena cava collapsibility index to predict post spinal hypotension in pregnant women undergoing caesarean section[J]. Anesth Pain Med, 2022, 12(1): e121648.
|
22 |
郭敏, 王雷, 雷波, 等. 超声监测下腔静脉直径及其塌陷指数在产后出血容量评估中的应用[J]. 中国医药科学, 2022, 12(9): 161-164.
|
23 |
Preau S, Bortolotti P, Colling D, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure[J]. Crit Care Med, 2017, 45(3): e290-e297.
|
24 |
陈鹏飞, 蒯思, 姜伟锋, 等. 超声监测下腔静脉变异度指导液体复苏对脓毒症休克患者血流动力学和预后指标的影响[J]. 中外医学研究, 2024, 22(7): 5-9.
|
25 |
师华华, 刘天瑜, 张彦峰, 等. 重症超声联合中心静脉血氧饱和度可指导脓毒症休克患者液体复苏治疗[J]. 内科急危重症杂志, 2022, 28(5): 401-403.
|
26 |
Bortolotti P, Colling D, Colas V, et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias[J]. Ann Intensive Care, 2018, 8(1): 79.
|
27 |
斯妍娜, 鲍红光, 张晨, 等. 下腔静脉塌陷指数的不同阈值指导输液对预防腰麻后低血压的效果[J]. 临床麻醉学杂志, 2018, 34(9): 837-840.
|
28 |
Purushothaman SS, Alex A, Kesavan R, et al. Ultrasound measurement of inferior vena cava collapsibility as a tool to predict propofol-induced hypotension[J]. Anesth Essays Res, 2020, 14(2): 199-202.
|
29 |
刘忠文. 下腔静脉塌陷指数指导补液对骨折手术腰麻患者血流动力学及低血压风险的影响[J]. 世界复合医学, 2023, 9(12): 146-149.
|
30 |
王健, 环伶, 姜蕾, 等. 超声检查评估下腔静脉变异度在老年患者无痛胃肠镜检查中的临床应用价值[J]. 陕西医学杂志, 2023, 52(12): 1715-1717,1722.
|
31 |
Ni TT, Zhou ZF, He B, et al. Inferior vena cava collapsibility index can predict hypotension and guide fluid management after spinal anesthesia[J]. Front Surg, 2022, 9: 831539.
|
32 |
Ceruti S, Anselmi L, Minotti B, et al. Prevention of arterial hypotension after spinal anaesthesia using vena cava ultrasound to guide fluid management[J]. Br J Anaesth, 2018, 120(1): 101-108.
|
33 |
Pourmand A, Pyle M, Yamane D, et al. The utility of point-of-care ultrasound in the assessment of volume status in acute and critically ill patients[J]. World J Emerg Med, 2019, 10(4): 232.
|
34 |
Da Hora Passos R, Caldas J, Ramos JGR, et al. Ultrasound-based clinical profiles for predicting the risk of intradialytic hypotension in critically ill patients on intermittent dialysis: a prospective observational study[J]. Crit Care, 2019, 23(1): 389.
|
35 |
Arun Thomas ET, Mohandas MK, George J. Comparison between clinical judgment and integrated lung and inferior vena cava ultrasonography for dry weight estimation in hemodialysis patients[J]. Hemodial Int, 2019, 23(4): 494-503.
|
36 |
Cogliati C, Ceriani E, Gambassi G, et al. Phenotyping congestion in patients with acutely decompensated heart failure with preserved and reduced ejection fraction: The Decongestion during therapy for acute decompensated heart failure in HFpEF vs HFrEF- DRY-OFF study[J]. Eur J Intern Med, 2022, 97: 69-77.
|
37 |
Pérez-Herrero S, Lorenzo-Villalba N, Urbano E, et al. Prognostic significance of lung and cava vein ultrasound in elderly patients admitted for acute heart failure: PROFUND-IC registry analysis[J]. J Clin Med, 2022, 11(15): 4591.
|
38 |
吕云玲, 卢娜, 张明明, 等. 下腔静脉变异率联合脉搏指示连续心排血量在心肌梗死后心源性休克容量管理中应用研究[J]. 中国实用内科杂志, 2024, 44(3): 223-227.
|
39 |
Molokoane-Mokgoro K, Goldstein LN, Wells M. Ultrasound evaluation of the respiratory changes of the inferior vena cava and axillary vein diameter at rest and during positive pressure ventilation in spontaneously breathing healthy volunteers[J]. Emerg Med J, 2018, 35(5): 297-302.
|
40 |
Giraud R, Abraham PS, Brindel P, et al. Respiratory changes in subclavian vein diameters predicts fluid responsiveness in intensive care patients: a pilot study[J]. J Clin Monit Comput, 2018, 32(6): 1049-1055.
|
41 |
Charbonneau H, Riu B, Faron M, et al. Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters[J]. Crit Care, 2014, 18(5): 473.
|
42 |
Levine AC, Shah SP, Umulisa I, et al. Ultrasound assessment of severe dehydration in children with diarrhea and vomiting[J]. Acad Emerg Med, 2010, 17(10): 1035-1041.
|
43 |
Gui J, Guo J, Nong F, et al. Impact of individual characteristics on sonographic IVC diameter and the IVC diameter/aorta diameter index[J]. Am J Emerg Med, 2015, 33(11): 1602-1605.
|
44 |
Rahman NHN, Ahmad R, Kareem MM, et al. Ultrasonographic assessment of inferior vena cava/abdominal aorta diameter index: a new approach of assessing hypovolemic shock class 1[J]. Int J Emerg Med, 2016, 9(1): 8.
|
45 |
El-Baradey GF, El-Shmaa NS. Does caval aorta index correlate with central venous pressure in intravascular volume assessment in patients undergoing endoscopic transuretheral resection of prostate?[J]. Saudi J Anaesth, 2016, 10(2): 174-178.
|
46 |
Mesin L, Policastro P, Albani S, et al. Non-Invasive estimation of right atrial pressure using a semi-automated echocardiographic tool for inferior vena cava edge-tracking[J]. J Clin Med, 2022, 11(12): 3257.
|