1 |
Rajpurkar P, Lungren MP. The current and future state of AI interpretation of medical images[J]. N Engl J Med, 2023, 388(21):1981-1990.
|
2 |
刘梦怡, 吴伟春. 人工智能在超声心动图中的应用现状及进展[J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 216-219.
|
3 |
Elias P, Jain SS, Poterucha T, et al. Artificial intelligence for cardiovascular care-part 1: advances: JACC review topic of the week[J]. J Am Coll Cardiol, 2024, 83(24): 2472-2486.
|
4 |
Ouyang D, Carter RE, Pellikka PA. Machine learning in imaging: what is JASE looking for?[J]. J Am Soc Echocardiogr, 2024, 37(3): 273-275.
|
5 |
Zhu S, Gilbert M, Chetty I, et al. The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: An analysis of the characteristics and intended use[J]. Int J Med Inform, 2022,165: 104828.
|
6 |
Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580(7802): 252-256.
|
7 |
He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment[J]. Nature, 2023,616(7957): 520-524.
|
8 |
Akan T, Alp S, Bhuiyan MS, et al. ViViEchoformer: deep video regressor predicting ejection fraction[J]. medRxiv, 2024: 2024.6.21.24309327.
|
9 |
Kwan AC, Chang EW, Jain I, et al. Deep learning-derived myocardial strain[J]. JACC Cardiovasc Imaging, 2024, 17(7): 715-725.
|
10 |
Salte IM, Østvik A, Smistad E, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography[J]. JACC:Cardiovasc Imaging, 2021, 14(10): 1918-1928.
|
11 |
Salte IM, Østvik A, Olaisen SH, et al. Deep learning for improved precision and reproducibility of left ventricular strain in echocardiography:a test-retest study[J]. J Am Soc Echocardiogr, 2023, 36(7): 788-799.
|
12 |
Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance[J]. J Am Soc Echocardiogr, 2019, 32(8): 969-977.
|
13 |
Qu MJ, Wang S, Wang Y, et al. FFANet-full frequency attention net for automatic diastolic function assessment[J]. Biomed Signal Proces 2023, 86: 105124.
|
14 |
Akerman AP, Porumb M, Scott CG, et al. Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence[J]. JACC Adv, 2023, 2(6): 100452.
|
15 |
Pandey A, Kagiyama N, Yanamala N, et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction[J]. JACC Cardiovasc Imaging, 2021, 14(10): 1887-1900.
|
16 |
Shah R, Tokodi M, Jamthikar A, et al. A deep patient-similarity learning framework for the assessment of diastolic dysfunction in elderly patients[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(7): 937-946.
|
17 |
Carluccio E, Cameli M, Rossi A, et al. Left atrial strain in the assessment of diastolic function in heart failure: a machine learning approach[J]. Circ Cardiovasc Imaging, 2023, 16(2): e014605.
|
18 |
Cassianni C, Huntley GD, Castrichini M, et al. Automated echocardiographic detection of HFpEF using artificial intelligence is associated with cardiac mortality and heart failure hospitalization[J]. J Am Soc Echocardiogr, 2024, 37(9): 914-916.
|
19 |
Valsaraj A, Kalmady SV, Sharma V, et al. Development and validation of echocardiography-based machine-learning models to predict mortality[J]. EBioMedicine, 2023, 90: 104479.
|
20 |
Nazar W, Szymanowicz S, Nazar K, et al. Artificial intelligence models in prediction of response to cardiac resynchronization therapy:a systematic review[J]. Heart Fail Rev, 2023, 29(1): 133-150.
|
21 |
Krishna H, Desai K, Slostad B, et al. Fully automated artificial intelligence assessment of aortic stenosis by echocardiography[J]. J Am Soc Echocardiogr, 2023, 36(7): 769-777.
|
22 |
Holste G, Oikonomou EK, Mortazavi BJ, et al. Severe aortic stenosis detection by deep learning applied to echocardiography[J]. Eur Heart J,2023, 44(43): 4592-4604.
|
23 |
Lachmann M, Rippen E, Schuster T, et al. Subphenotyping of patients with aortic stenosis by unsupervised agglomerative clustering of echocardiographic and hemodynamic data[J]. JACC: Cardiovasc Interv, 2021, 14(19): 2127-2140.
|
24 |
Vafaeezadeh M, Behnam H, Hosseinsabet A, et al. Automatic morphological classification of mitral valve diseases in echocardiographic images based on explainable deep learning methods[J]. Int J Comput Assist Radiol Surg, 2022, 17(2): 413-425.
|
25 |
Long A, Haggerty CM, Finer J, et al. Deep learning for echo analysis,tracking, and evaluation of mitral regurgitation (DELINEATE-MR)[J].Circulation, 2024, 150(12): 911-922.
|
26 |
Kim S, Ren H, Charton J, et al. Assessment of valve regurgitation severity via contrastive learning and multi-view video integration[J].Phys Med Biol, 2024, 69(4).
|
27 |
Cheng L, Bosch PBJ, Hofman RFH, et al. Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical 4-chamber ultrasounds[J]. J Am Heart Assoc, 2022,11(16): e024168.
|
28 |
Yang F, Chen X, Lin X, et al. Automated analysis of Doppler echocardiographic videos as a screening tool for valvular heart diseases[J]. JACC Cardiovasc Imaging, 2022, 15(4): 551-563.
|
29 |
Sánchez-Puente A, Dorado-Díaz PI, Sampedro-Gómez J, et al.Machine learning to optimize the echocardiographic follow-up of aortic stenosis[J]. JACC Cardiovasc Imaging, 2023, 16(6): 733-744.
|
30 |
Heitzinger G, Spinka G, Prausmüller S, et al. Tailored risk stratification in severe mitral regurgitation and heart failure using supervised learning techniques[J]. JACC Adv, 2022, 1(3): 100063.
|
31 |
Hausleiter J, Lachmann M, Stolz L, et al. Artificial intelligence-derived risk score for mortality in secondary mitral regurgitation treated by transcatheter edge-to-edge repair: the EuroSMR risk score[J]. Eur Heart J, 2024, 45(11): 922-936.
|
32 |
Kwak S, Lee SA, Lim J, et al. Data-driven mortality risk prediction of severe degenerative mitral regurgitation patients undergoing mitral valve surgery[J]. Eur Heart J-Cardiovasc Imaging, 2023, 24(9): 1156-1165.
|
33 |
Huang MS, Wang CS, Chiang JH, et al. Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography[J]. Circulation, 2020,142(16): 1510-1520.
|
34 |
Slivnick JA, Gessert NT, Cotella JI, et al. Echocardiographic detection of regional wall motion abnormalities using artificial intelligence compared to human readers[J]. J Am Soc Echocardiogr, 2024, 37(7):655-663.
|
35 |
Laumer F, Di Vece D, Cammann VL, et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating takotsubo syndrome from myocardial infarction[J]. JAMA Cardiol, 2022, 7(5): 494.
|
36 |
Guo Y, Du GQ, Shen WQ, et al. Automatic myocardial infarction detection in contrast echocardiography based on polar residual network[J]. Comput Methods Programs Biomed, 2021, 198: 105791.
|
37 |
Huang D, Yang X, Ruan H, et al. Enhancing prediction of myocardial recovery after coronary revascularization: integrating radiomics from myocardial contrast echocardiography with machine learning[J]. Int J Gen Med, 2024, 17: 2539-2555.
|
38 |
Upton R, Mumith A, Beqiri A, et al. Automated echocardiographic detection of severe coronary artery disease using artificial intelligence[J].JACC Cardiovasc Imaging, 2022, 15(5): 715-727.
|
39 |
Gulati M, Levy PD, Mukherjee D, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2021, 144(22): e368-e454.
|
40 |
Chao CJ, Jeong J, Arsanjani R, et al. Echocardiography-based deep learning model to differentiate constrictive pericarditis and restrictive cardiomyopathy[J]. JACC Cardiovasc Imaging, 2024, 17(4): 349-360.
|
41 |
Oikonomou EK, Vaid A, Holste G, et al. Artificial intelligenceguided detection of under-recognized cardiomyopathies on pointof-care cardiac ultrasound: a multi-center study[J]. medRxiv, 2024:2024.3.10.24304044.
|
42 |
Duffy G, Cheng PP, Yuan N, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning[J]. JAMA Cardiol, 2022, 7(4): 386-395.
|
43 |
Hwang IC, Choi D, Choi YJ, et al. Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model[J]. Sci Rep, 2022, 12(1): 20998.
|
44 |
Xu Z, Yu F, Zhang B, et al. Intelligent diagnosis of left ventricular hypertrophy using transthoracic echocardiography videos[J]. Comput Methods Programs Biomed, 2022, 226: 107182.
|
45 |
Farhad M, Masud MM, Beg A, et al. A data-efficient zero-shot and few-shot Siamese approach for automated diagnosis of left ventricular hypertrophy[J]. Comput Biol Med, 2023, 163: 107129.
|
46 |
Yu F, Huang H, Yu Q, et al. Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy[J]. Ann Transl Med, 2021, 9(2): 108.
|
47 |
Morita SX, Kusunose K, Haga A, et al. Deep learning analysis of echocardiographic images to predict positive genotype in patients with hypertrophic cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8:669860.
|
48 |
Rhee TM, Ko YK, Kim HK, et al. Machine learning-based discrimination of cardiovascular outcomes in patients with hypertrophic cardiomyopathy[J].JACC Asia, 2024, 4(5): 375-386.
|
49 |
Yuan N, Stein NR, Duffy G, et al. Deep learning evaluation of echocardiograms to identify occult atrial fibrillation[J]. NPJ Digit Med, 2024, 7(1): 96.
|
50 |
Ming C, Lee GJW, Teo YH, et al. Machine learning modeling to predict atrial fibrillation detection in embolic stroke of undetermined source patients[J]. J Pers Med, 2024, 14(5): 534.
|
51 |
Hamatani Y, Nishi H, Iguchi M, et al. Machine learning risk prediction for incident heart failure in patients with atrial fibrillation[J]. JACC Asia, 2022, 2(6): 706-716.
|
52 |
Pieszko K, Hiczkiewicz J, Łojewska K, et al. Artificial intelligence in detecting left atrial appendage thrombus by transthoracic echocardiography and clinical features: the left atrial thrombus on transoesophageal echocardiography (LATTEE) registry[J]. Eur Heart J,2024, 45(1): 32-41.
|
53 |
黄凤誉, 钟玥, 张然, 等. 房颤射频消融患者的聚类分析及消融成功率评价[J]. 四川大学学报(医学版), 2024, 55(3): 687-692.
|
54 |
Fortmeier V, Lachmann M, Körber MI, et al. Solving the pulmonary hypertension paradox in patients with severe tricuspid regurgitation by employing artificial intelligence[J]. JACC Cardiovasc Interv, 2022,15(4): 381-394.
|
55 |
Fortmeier V, Lachmann M, Stolz L, et al. Artificial intelligenceenabled assessment of right ventricular to pulmonary artery coupling in patients undergoing transcatheter tricuspid valve intervention[J].Eur Heart J Cardiovasc Imaging, 2024, 25(4): 558-572.
|
56 |
Matsunaga T, Kono A, Nishio M, et al. Development and web deployment of prediction model for pulmonary arterial pressure in chronic thromboembolic pulmonary hypertension using machine learning[J]. PLoS One, 2024, 19(4): e0300716.
|
57 |
Anand V, Weston AD, Scott CG, et al. Machine learning for diagnosis of pulmonary hypertension by echocardiography[J]. Mayo Clin Proc,2024, 99(2): 260-270.
|
58 |
Hirata Y, Tsuji T, Kotoku J, et al. Echocardiographic artificial intelligence for pulmonary hypertension classification[J]. Heart, 2024,110(8): 586-593.
|
59 |
Swinnen K, Verstraete K, Baratto C, et al. Machine learning to differentiate pulmonary hypertension due to left heart disease from pulmonary arterial hypertension[J]. ERJ Open Res, 2023, 9(5): 00229-2023.
|
60 |
Nayak A, Ouyang D, Ashley EA. A deep learning algorithm accurately detects pericardial effusion on echocardiography[J]. J Am Coll Cardiol,2020, 75(11_Supplement_1): 1563.
|
61 |
Cheng CY, Wu CC, Chen HC, et al. Development and validation of a deep learning pipeline to measure pericardial effusion in echocardiography[J]. Front Cardiovasc Med, 2023, 10: 1195235.
|
62 |
Yang J, Zhang S, Zhou Y, et al. The efficiency of a machine learning approach based on spatio-temporal information in the detection of patent foramen ovale from contrast transthoracic echocardiography Images: a primary study[J]. Biomed Signal Process Control, 2023, 84:104813.
|
63 |
Li Y, Chen H, Yang X, et al. An artificial intelligence-driven approach for automatic evaluation of right-to-left shunt grades in salinecontrasted transthoracic echocardiography[J]. Ultrasound Med Biol,2024, 50(8): 1134-1142.
|
64 |
Marcus E, Teuwen J. Artificial intelligence and explanation: how, why,and when to explain black boxes[J]. Eur J Radiol, 2024, 173: 111393.
|
65 |
Collins GS, Moons KGM, Dhiman P, et al. Tripod+AI statement:updated guidance for reporting clinical prediction models that use regression or machine learning methods[J]. BMJ, 2024, 385: e078378.
|
66 |
Campbell JP, Lee AY, Abràmoff M, et al. Reporting guidelines for artificial intelligence in medical research[J]. Ophthalmology, 2020,127(12): 1596-1599.
|