1 |
Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, et al.Machine learning in fetal cardiology: what to expect [J].Fetal Diagn Ther,2020, 47(5): 363-372.
|
2 |
Gómez Montes E, Herraiz I, Mendoza A, et al.Fetal intervention in right outflow tract obstructive disease: selection of candidates and results [J].Cardiol Res Pract, 2012, 2012: 592403.
|
3 |
宋书豪, 曾施.应用深度学习模型分类正常胎儿心脏超声切面 [J].中国医学影像技术, 2025, 41(1): 70-73.
|
4 |
陈雯雯, 朱业, 张易薇, 等.深度学习模型用于自动分类超声心动图切面 [J].中国医学影像技术, 2024, 40(8): 1124-1129.
|
5 |
成汉林, 史中青, 戚占如, 等.基于深度学习的超声心动图动态图像切面识别研究 [J/OL].中华医学超声杂志(电子版), 2024, 21(2):128-136.
|
6 |
石智红, 李胜利.人工智能在产前超声中的应用和研究进展 [J/OL].中华医学超声杂志(电子版), 2023, 20(1): 113-117.
|
7 |
李胜利, 秦越, 谭光华, 等.医学超声人工智能的应用与挑战 [J/OL].中华医学超声杂志(电子版), 2023, 20(1): 1-5.
|
8 |
Pu B, Wang L, Yang J, et al.M3-UDA: a new benchmark for unsupervised domain adaptive fetal cardiac structure detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024: 11621-11630.
|
9 |
Wu L, Cheng JZ, Li S, et al.FUIQA: fetal ultrasound image quality assessment with deep convolutional networks [J].IEEE Trans Cybern,2017, 47(5): 1336-1349.
|
10 |
Abdi AH, Luong C, Tsang T, et al.Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J].IEEE Trans Med Imaging, 2017,36(6): 1221-1230.
|
11 |
Abdi AH, Luong C, Tsang T, et al.Quality assessment of echocardiographic cine using recurrent neural networks: feasibility on five standard view planes [C]//Medical Image Computing and Computer Assisted Intervention - MICCAI 2017.Cham, 2017: 302-310.
|
12 |
Pu B, Li K, Li S, et al.Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT [J].IEEE Trans Industr Inform, 2021, 17(11): 7771-7780.
|
13 |
Pu B, Lu Y, Chen J, et al.Mobileunet-fpn: a semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments [J].IEEE J Biomed Health Inform, 2022,26(11): 5540-5550.
|
14 |
Pu B, Zhu N, Li K, et al.Fetal cardiac cycle detection in multiresource echocardiograms using hybrid classification framework [J].Future Generation Computer Systems, 2021, 115: 825-836.
|
15 |
Lu Y, Li K, Pu B, et al.A YOLOX-based Deep Instance Segmentation Neural Network for Cardiac Anatomical Structures in Fetal Ultrasound Images [J].IEEE/ACM Trans Comput Biol Bioinform, 2022, 21(4):1007-1018.
|
16 |
Shan A, Lv J, Zhu H, et al.Fetal heart and descending aorta detection in four-chamber view of fetal echocardiography [J].Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2722-2725.
|
17 |
American Institute of Ultrasound in Medicine.AIUM practice guideline for the performance of fetal echocardiography [J].J Ultrasound Med, 2013, 32(6): 1067-1082.
|
18 |
International Society of Ultrasound in Obstetrics and Gynecology,Carvalho JS, Allan LD, et al.ISUOG Practice Guidelines (updated):sonographic screening examination of the fetal heart [J].Ultrasound Obstet Gynecol, 2013, 41(3): 348-359.
|
19 |
Chinese standard for fetal echocardiography [J].Chin J Ultrasonogr,2015, 24(11): 921-926.
|
20 |
Abdi AH, Luong C, Tsang T, et al.Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J].IEEE Trans Med Imaging, 2017,36(6): 1221-1230.
|
21 |
Dong J, Liu S, Liao Y, et al.A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J].IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
|