[1] |
Fry WJ, Mosberg WH Jr, Barnard JW, et al. Production of focal destructive lesions in the central nervous system with ultrasound [J]. J Neurosurg, 1954, 11(5): 471-478.
|
[2] |
Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery [J]. Nat Rev Drug Discov, 2004, 3(2): 115-124.
|
[3] |
Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery [J]. Science, 1995, 269(5225): 850-853.
|
[4] |
Elias PM. Lipids and the epidermal permeability barrier [J]. Arch Dermatol Res, 1981, 270(1): 95-117.
|
[5] |
Elias PM. Epidermal lipids, barrier function, and desquamation [J]. J Invest Dermatol, 1983, 80(1 Suppl): 44s-9s.
|
[6] |
Park D, Park H, Seo J, et al. Sonophoresis in transdermal drug deliverys [J]. Ultrasonics, 2014, 54(1): 56-65.
|
[7] |
Azagury A, Khoury L, Enden G, et al. Ultrasound mediated transdermal drug delivery [J]. Adv Drug Deliv Rev, 2014, 72: 127-143.
|
[8] |
Mitragotri S, Edwards DA, Blankschtein D, et al. A mechanistic study of ultrasonically-enhanced transdermal drug delivery [J]. J Pharm Sci, 1995, 84(6): 697-706.
|
[9] |
L K. Ultrasound. Its Chemical, Physical, and Biological Effects. Kenneth S. Suslick, Ed. VCH, New York, 1988 xiv, 336 pp., illus. $65 [J]. Science, 1989, 243(4897): 1499.
|
[10] |
Merino G, Kalia YN, Delgado-Charro MB, et al. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis [J]. J Control Release, 2003, 88(1): 85-94.
|
[11] |
Boucaud A, Montharu J, Machet L, et al. Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound [J]. Anat Rec, 2001, 264(1): 114-119.
|
[12] |
Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects [J]. Phys Ther, 2001, 81(7): 1351-1358.
|
[13] |
Wollina U, Heinig B, Naumann G, et al. Effects of low-frequency ultrasound on microcirculation in venous leg ulcers [J]. Indian J Dermatol, 2011, 56(2): 174-179.
|
[14] |
Ueda H, Mutoh M, Seki T, et al. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery [J]. Biol Pharm Bull, 2009, 32(5): 916-920.
|
[15] |
Tezel A, Sens A, Tuchscherer J, et al. Frequency dependence of sonophoresis [J]. Pharm Res, 2001, 18(12): 1694-1700.
|
[16] |
Kushner J 4th, Blankschtein D, Langer R. Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis [J]. J Pharm Sci, 2004, 93(11): 2733-2745.
|
[17] |
Kushner J 4th, Blankschtein D, Langer R. Heterogeneity in skin treated with low-frequency ultrasound [J]. J Pharm Sci, 2008, 97(10): 4119-4128.
|
[18] |
Polat BE, Figueroa PL, Blankschtein D, et al. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate [J]. J Pharm Sci, 2011, 100(2): 512-529.
|
[19] |
Morimoto Y, Mutoh M, Ueda H, et al. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute-water transport relationship and confocal microscopy [J]. J Control Release, 2005, 103(3): 587-597.
|
[20] |
Polat BE, Deen WM, Langer R, et al. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis-Insight into the observed synergism [J]. J Control Release, 2012, 158(2): 250-260.
|
[21] |
Lanke SS, Kolli CS, Strom JG, et al. Enhanced transdermal delivery of low molecular weight heparin by barrier perturbation [J]. Int J Pharm, 2009, 365(1-2): 26-33.
|
[22] |
Le L, Kost J, Mitragotri S. Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery [J]. Pharm Res, 2000, 17(9): 1151-1154.
|
[23] |
Hikima T, Ohsumi S, Shirouzu K, et al. Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis [J]. Biol Pharm Bull, 2009, 32(5): 905-909.
|
[24] |
Kost J, Pliquett U, Mitragotri S, et al. Synergistic effect of electric field and ultrasound on transdermal transport [J]. Pharm Res, 1996, 13(4): 633-638.
|
[25] |
Ahmadi F, McLoughlin IV, Chauhan S, et al. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure [J]. Prog Biophys Mol Biol, 2012, 108(3): 119-138.
|
[26] |
Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis [J]. Pharm Res, 1996, 13(3): 411-420.
|
[27] |
Maruani A, Vierron E, Machet L, et al. Tolerance of low-frequency ultrasound sonophoresis: a double-blind randomized study on humans [J]. Skin Res Technol, 2012, 18(2): 151-156.
|
[28] |
Meshali MM, Abdel-Aleem HM, Sakr FM, et al. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes [J]. Die Pharmazie, 2008, 63(1): 49-53.
|
[29] |
Yang JH, Kim TY, Lee JH, et al. Anti-hyperalgesic and anti-inflammatory effects of ketorolac tromethamine gel using pulsed ultrasound in inflamed rats [J]. Arch Pharm Res, 2008, 31(4): 511-517.
|
[30] |
Serikov NP. [Efficacy of ibuprofen (nurofen gel) ultraphonophoresis for pain relief in osteoarthrosis] [J]. Ter Arkh, 2007, 79(5): 79-81.
|
[31] |
Cabak A, Maczewska M, Lyp M, et al. The effectiveness of phonophoresis with ketoprofen in the treatment of epicondylopathy [J]. Ortop Traumatol Rehabil, 2005, 7(6): 660-665.
|
[32] |
Tachibana K, Tachibana S. Use of ultrasound to enhance the local anesthetic effect of topically applied aqueous lidocaine [J]. Anesthesiology, 1993, 78(6): 1091-1096.
|
[33] |
Kim TY, Jung DI, Kim YI, et al. Anesthetic effects of lidocaine hydrochloride gel using low frequency ultrasound of 0.5 MHz [J]. J Pharm Pharm Sci, 2007, 10(1): 1-8.
|
[34] |
Liu H, Li S, Pan W, et al. Investigation into the potential of low-frequency ultrasound facilitated topical delivery of Cyclosporin A [J]. Int J Pharm, 2006, 326(1-2): 32-38.
|
[35] |
Ragelis Slu. [Tetracycline penetration into tissue by modified electro- and phonophoretic methods] [J]. Antibiotiki, 1981, 26(9): 699-703.
|
[36] |
Santoianni P, Nino M, Calabro G. Intradermal drug delivery by low-frequency sonophoresis (25 kHz) [J]. Dermatol Online J, 2004, 10(2): 24.
|
[37] |
Aoi A, Watanabe Y, Mori S, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound [J]. Ultrasound Med Biol, 2008, 34(3): 425-434.
|
[38] |
Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles [J]. J Control Release, 2009, 138(3): 268-276.
|
[39] |
Tartis MS, McCallan J, Lum AF, et al. Therapeutic effects of paclitaxel-containing ultrasound contrast agents [J]. Ultrasound Med Biol, 2006, 32(11): 1771-1780.
|
[40] |
Nomikou N, Li YS, McHale AP. Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy [J]. Cancer Letters, 2010, 288(1): 94-98.
|
[41] |
Lee S, Snyder B, Newnham RE, et al. Noninvasive ultrasonic transdermal insulin delivery in rabbits using the light-weight cymbal array [J]. Diabetes Technol Ther, 2004, 6(6): 808-815.
|
[42] |
Smith NB, Lee S, Shung KK. Ultrasound-mediated transdermal in vivo transport of insulin with low-profile cymbal arrays [J]. Ultrasound Med Biol, 2003, 29(8): 1205-1210.
|
[43] |
Saliba S, Mistry DJ, Perrin DH, et al. Phonophoresis and the absorption of dexamethasone in the presence of an occlusive dressing [J]. J Athl Train, 2007, 42(3): 349-354.
|
[44] |
Yang JH, Kim DK, Yun MY, et al. Transdermal delivery system of triamcinolone acetonide from a gel using phonophoresis [J]. Arch Pharm Res, 2006, 29(5): 412-417.
|