1 |
Alnazer I, Bourdon P, Urruty T, et al. Recent advances in medical image processing for the evaluation of chronic kidney disease [J]. Med Image Anal, 2021, 69: 101960.
|
2 |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
|
3 |
Petrucci I, Clementi A, Sessa C, et al. Ultrasound and color Doppler applications in chronic kidney disease [J]. J Nephrol, 2018, 31(6): 863-879.
|
4 |
卓莉, 邹古明, 李文歌. 人工智能在肾脏病理诊断中的应用 [J/OL]. 中华肾病研究电子杂志, 2020, 9(3): 135-137.
|
5 |
解添淞, 周正荣. 人工智能及影像组学在腹部肿瘤中的应用进展 [J]. 中华放射学杂志, 2020, 54(4): 376-379.
|
6 |
刘帮燕, 赵丽霞, 郑曙光, 等. 超声多参数评分诊断慢性肾病 [J]. 中国医学影像技术, 2021, 37(2): 273-277.
|
7 |
LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
|
8 |
Xie G, Chen T, Li Y, et al. Artificial intelligence in nephrology: how can artificial intelligence augment nephrologists' intelligence? [J]. Kidney Dis (Basel), 2020, 6(1): 1-6.
|
9 |
Ma L, Ma C, Liu Y, et al. Thyroid diagnosis from SPECT images using convolutional neural network with optimization [J]. Comput Intell Neurosci, 2019, 2019: 6212759.
|
10 |
Brattain LJ, Telfer BA, Dhyani M, et al. Machine learning for medical ultrasound: status, methods, and future opportunities [J]. Abdom Radiol (NY), 2018, 43(4): 786-799.
|
11 |
Yi J, Kang H, Kwon J, et al. Technology trends and applications of deep learning in ultrasonography: image quality enhancement, diagnostic support, and improving workflow efficiency [J]. Ultrasonography, 2021, 40(1): 7-22.
|
12 |
Kuo C, Chang C, Liu K, et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning [J]. NPJ Digital Med, 2019, 2: 29.
|
13 |
Zheng Q, Furth S, Tasian G, et al. Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features [J]. J Pediatr Urolo, 2019, 15(1): 75.e1-75.e7.
|
14 |
Ma F, Sun T, Liu L, et al. Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network [J]. Future Generation Computer Systems, 2020, 111: 17-26.
|
15 |
Wu Y, Yi Z. Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks [J]. Knowledge-Based Systems, 2020, 200(2): 105873.
|
16 |
Chen C, Pai T, Hsu H, et al. Prediction of chronic kidney disease stages by renal ultrasound imaging [J]. Enterprise Information Systems, 2019, 14(2): 178-195.
|
17 |
Sudharson S, Kokil P. An ensemble of deep neural networks for kidney ultrasound image classification [J]. Comput Methods Programs Biomed, 2020, 197: 105709.
|
18 |
李广涵, 刘建, 武敬平, 等. 基于支持向量机多模态超声模型诊断肾疾病 [J]. 中国医学影像技术, 2020, 36(6): 898-902.
|
19 |
江卫星, 郑闪, 寿建忠, 等. 人工智能在肾细胞癌诊断中的研究现状 [J]. 中华泌尿外科杂志, 2020, 41(3): 233-236.
|