1 |
姜玉新 王红燕, 李建初, 等.聚焦质控指标体系 推进超声质量提升 [J/OL].中华医学超声杂志(电子版), 2024, 21(7): 647-652.
|
2 |
国家卫生健康委员会.2023 年国家医疗服务与质量安全报告 [R].北京: 科学技术文献出版社, 2024: 459-460.
|
3 |
Yu KH, Beam AL, Kohane IS.Artificial intelligence in healthcare [J].Nat Biomed Eng, 2018, 2(10): 719-731.
|
4 |
Krishna TB, Kokil P.Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models [J].Expert Syst Appl, 2024, 238: 122153.
|
5 |
Mor-Avi V, Khandheria B, Klempfner R, et al.Real-time artificial intelligence-based guidance of echocardiographic imaging by novices: image quality and suitability for diagnostic interpretation and quantitative analysis [J].Circ Cardiovasc Imaging, 2023, 16(11):e015569.
|
6 |
Zhao CK, Ren TT, Yin YF, et al.A comparative analysis of two machine learning-based diagnostic patterns with thyroid imaging reporting and data system for thyroid nodules: diagnostic performance and unnecessary biopsy rate [J].Thyroid, 2021, 31(3): 470-481.
|
7 |
Christiansen F, Konuk E, Ganeshan AR, et al.International multicenter validation of AI-driven ultrasound detection of ovarian cancer [J].Nat Med, 2025, 31(1): 189-196.
|
8 |
Chen H, Wu L, Dou Q, et al.Ultrasound standard plane detection using a composite neural network framework [J].IEEE Trans Cybern,2017, 47(6): 1576-1586.
|
9 |
Tan Y, Peng Y, Guo L, et al.Cost-effectiveness analysis of AI-based image quality control for perinatal ultrasound screening [J].BMC Med Educ, 2024.24(1): 1437.
|
10 |
Song Y, Zhong Z, Zhao B, et al.Medical ultrasound image quality assessment for autonomous robotic screening [J].IEEE Robot Autom Lett, 2022, 7(3): 6290-6296.
|
11 |
Mitchell S, Nikolopoulos M, El-Zarka A, et al.Artificial intelligence in ultrasound diagnoses of ovarian cancer: a systematic review and metaanalysis [J].Cancers (Basel), 2024, 16(2): 422.
|
12 |
Gu Y, Xu W, Lin B, et al.Deep learning based on ultrasound images assists breast lesion diagnosis in China: a multicenter diagnostic study[J].Insights Imaging, 2022, 13(1): 124.
|
13 |
Guldogan N, Taskin F, Icten GE, et al.Artificial intelligence in BIRADS categorization of breast lesions on ultrasound: can we omit excessive follow-ups and biopsies? [J].Acad Radiol, 2024, 31(6):2194-2202.
|
14 |
Hamyoon H, Yee Chan W, Mohammadi A, et al.Artificial intelligence,BI-RADS evaluation and morphometry: a novel combination to diagnose breast cancer using ultrasonography, results from multicenter cohorts [J].Eur J Radiol, 2022, 157: 110591.
|
15 |
García-Mejido JA, Galán-Paez J, Solis-Martín D, et al.Ultrasound diagnosis of pelvic organ prolapse using artificial intelligence [J].J Clin Med, 2025, 14(11): 3634.
|
16 |
Lin M, He X, Guo H, et al.Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations [J].Ultrasound Obstet Gynecol, 2022, 59(3): 304-316.
|
17 |
Ungureanu A, Marcu AS, Patru CL, et al.Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE)-a study protocol for developing an automated intelligent decision support system for early fetal echocardiography [J].BMC Pregnancy Childbirth, 2023, 23(1): 20.
|