1 |
中华医学会超声医学分会妇产超声学组, 国家卫生健康委妇幼司全国产前诊断专家组医学影像组.超声产前筛查指南 [J].中华超声影像学杂志, 2022, 31(1): 12.
|
2 |
李胜利. 胎儿畸形产前超声诊断学 [M]. 2版. 北京: 科学出版社, 2017.
|
3 |
中华医学会超声医学分会超声心动图学组. 中国胎儿超声心动图检查规范 [J]. 中华超声影像学杂志, 2015, 24(11): 921-926.
|
4 |
Pu B, Li K, Li S, et al. Automatic fetal ultrasound standard plane recognition based on deep learning and ⅡoT [J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7771-7780.
|
5 |
谭莹, 文华轩, 彭桂艳, 等. 在线产科超声图像智能质量控制系统的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2022, 19(7): 649.
|
6 |
张梅芳, 谭莹, 朱巧珍, 等. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J/OL]. 中华医学超声杂志(电子版), 2023, 20(9): 945-950.
|
7 |
余翔, 袁鹰, 李胜利. 产前超声人工智能应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(4): 300-304.
|
8 |
Guo W, Li S, Yu X, et al. Artificial intelligence in prenatal ultrasound: clinical application and prospect [J]. Advanced Ultrasound in Diagnosis & Therapy (AUDT), 2023, 7(2): 82-90.
|
9 |
郭文佳, 罗丹丹, 徐荟, 等.新型智能产前超声技术SFA自动识别与获取胎儿标准切面 [J].中国医学影像技术, 2023, 39(1): 65-69.
|
10 |
Pu B, Li K, Chen J, et al. HFSCCD: a hybrid neural network for fetal standard Cardiac cycle detection in ultrasound videos [J]. IEEE J Biomed Health Inform, 2024, 28(5): 2943-2954.
|
11 |
Zhang B, Liu H, Luo H, et al. Automatic quality assessment for 2D fetal sonographic standard plane based on multitask learning [J]. Medicine (Baltimore), 2021, 100(4): e24427.
|
12 |
Płotka S, Włodarczyk T, Klasa A, et al. FetalNet: multi-task deep learning framework for fetal ultrasound biometric measurements[DB/OL]. (2021-07-14)[2025-07-15].
|
13 |
Lu Y, Huang X, Dai Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT [J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 4177-4186.
|
14 |
Yu X, Wang J, Hong QQ, et al. Transfer learning for medical images analyses: A survey [J]. Neurocomputing, 2022, 489: 230-254.
|
15 |
Zhou DW, Wang QW, Qi ZH, et al. Class-incremental learning: A survey[DB/OL]. (2024-07-15)[2025-07-15].
|
16 |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[DB/OL]. (2018-01-28)[2025-07-15].
|
17 |
Tan M, Le Q. EffientNet: Rethinking model scaling for convolutional neural networks[DB/OL]. (2019-05-28)[2025-07-15].
|
18 |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [DB/OL]. (2020-10-22)[2025-07-15].
|
19 |
樊荣荣, 施晓雷, 孙安, 等. 人工智能在住院医师规范化培养中的应用价值探讨 [J]. 肿瘤影像学, 2018, 27(4): 261-264.
|