1 |
Arezzo F, Cormio G, La Forgia D, et al. A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients[J]. Arch Gynecol Obstet, 2022, 306(6): 2143-2154.
|
2 |
Ge S, Ye Q, Xie W, et al. AI-assisted method for efficiently generating breast ultrasound screening reports[J]. Curr Med Imaging, 2023, 19(2): 149-157.
|
3 |
Pang T, Li P, Zhao L. A survey on automatic generation of medical imaging reports based on deep learning[J]. Biomed Eng Online, 2023, 22(1): 48.
|
4 |
张梦雨. 基于人工智能的胎儿颅脑自动精细分割与轮廓提取[D]. 深圳: 南方医科大学, 2022.
|
5 |
谭莹, 文华轩, 彭桂艳, 等. 在线产科超声图像智能质量控制系统的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2022, 19(7): 649-655.
|
6 |
Dan T, Chen X, He M, et al. DeepGA for automatically estimating fetal gestational age through ultrasound imaging[J]. Artif Intell Med, 2023, 135: 102453.
|
7 |
Qi Y, Cai J, Lu J, et al. Multi-center study on deep learning-assisted detection and classification of fetal central nervous system anomalies using ultrasound imaging[DB/OL].(2025-01-01)[2025-03-26].
|
8 |
Gao Z, Ding Y, Zhu N, et al. Automated screening network for fetal closed spina bifida with semantic enhancement and projected attention[J]. IEEE J Biomed Health Inform, 2024.
|
9 |
Khan I, Khare BK. Exploring the potential of machine learning in gynecological care: a review[J]. Arch Gynecol Obstet, 2024, 309(6): 2347-2365.
|
10 |
Sezer A, Sezer HB. Deep convolutional neural network-based automatic classification of neonatal hip ultrasound images: a novel data augmentation approach with speckle noise reduction[J]. Ultrasound Med Biol, 2020, 46(3): 735-749.
|
11 |
Nti B, Lehmann AS, Haddad A, et al. Artificial intelligence-augmented pediatric lung POCUS: A pilot study of novice learners[J]. J Ultrasound Med, 2022, 41(12): 2965-2972.
|
12 |
Tsai MC, Lu HH, Chang YC, et al. Automatic screening of pediatric renal ultrasound abnormalities: deep learning and transfer learning approach[J]. JMIR Med Inform, 2022, 10(11): e40878.
|
13 |
Lin Y, Khong PL, Zou Z, et al. Evaluation of pediatric hydronephrosis using deep learning quantification of fluid-to-kidney-area ratio by ultrasonography[J]. Abdom Radiol(NY), 2021, 46(11): 5229-5239.
|
14 |
Chen X, You G, Chen Q, et al. Development and evaluation of an artificial intelligence system for children intussusception diagnosis using ultrasound images[J]. iScience, 2023, 26(4): 106456.
|
15 |
Nurmaini S, Partan RU, Bernolian N, et al. Deep learning for improving the effectiveness of routine prenatal screening for major congenital heart diseases[J]. J Clin Med, 2022, 11(21): 6454.
|
16 |
Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms[J]. NPJ Digit Med, 2020, 3: 10.
|
17 |
Madani A, Ong JR, Tibrewal A, et al.Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease[J]. NPJ Digit Med, 2018, 1: 59.
|
18 |
Xu W, Jia X, Mei Z, et al. Generalizability and diagnostic performance of AI models for thyroid US[J]. Radiology, 2023, 307(5): e221157.
|
19 |
Wang Y, Choi EJ, Choi Y, et al. Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning[J]. Ultrasound Med Biol, 2020, 46(5): 1119-1132.
|
20 |
Moon WK, Huang YS, Hsu CH, et al. Computer-aided tumor detection in automated breast ultrasound using a 3-D convolutional neural network[J]. Comput Methods Programs Biomed, 2020, 190: 105360.
|
21 |
Haque S, Ahmad F, Singh V, et al. Skin cancer detection using deep learning approaches[J]. Cancer Biother Radiopharm, 2025, 40(5): 301-312.
|
22 |
Jiang T, Chen C, Zhou Y, et al. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on ultrasound: a retrospective study[J]. BMC Cancer, 2024, 24(1): 510.
|
23 |
Cheng Y, Jin Z, Zhou X, et al. Diagnosis of metacarpophalangeal synovitis with musculoskeletal ultrasound images[J]. Ultrasound Med Biol, 2022, 48(3): 488-496.
|
24 |
Chiu PH, Boudier-Revéret M, Chang SW, et al. Deep learning for detecting supraspinatus calcific tendinopathy on ultrasound images[J]. J Med Ultrasound, 2022, 30(3): 196-202.
|
25 |
Marzola F, van Alfen N, Doorduin J, et al. Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment[J]. Comput Biol Med, 2021, 135: 104623.
|
26 |
Cha DI, Kang TW, Min JH, et al. Deep learning-based automated quantification of the hepatorenal index for evaluation of fatty liver by ultrasonography[J]. Ultrasonography, 2021, 40(4): 565-574.
|
27 |
Chou TH, Yeh HJ, Chang CC, et al. Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver[J]. J Chin Med Assoc, 2021, 84(9): 842-850.
|
28 |
Karako K, Mihara Y, Arita J, et al. Automated liver tumor detection in abdominal ultrasonography with a modified faster region-based convolutional neural networks (Faster R-CNN) architecture[J]. Hepatobiliary Surg Nutr, 2022, 11(5): 675-683.
|
29 |
Yu CJ, Yeh HJ, Chang CC, et al. Lightweight deep neural networks for cholelithiasis and cholecystitis detection by point-of-care ultrasound[J]. Computer Methods Programs Biomed, 2021, 211: 106382.
|
30 |
Kim T, Choi YH, Choi JH, et al. Gallbladder polyp classification in ultrasound images using an ensemble convolutional neural network model[J]. J Clin Med, 2021, 10(16): 3585.
|
31 |
Intharah T, Wiratchawa K, Wanna Y, et al. BiTNet: Hybrid deep convolutional model for ultrasound image analysis of human biliary tract and its applications[J]. Artif Intell Med, 2023, 139: 102539.
|
32 |
Zhang L, Lu Z, Yao L, et al. Effect of a deep learning–based automatic upper GI endoscopic reporting system: a randomized crossover study (with video)[J]. Gastrointest Endosc, 2023, 98(2): 181-190. e10.
|
33 |
Li X, Yao L, Wu H, et al. A deep learning–based, real-time image report system for linear EUS[J]. Gastrointest Endosc, 2025, 101(6): 1166-1173.e11.
|
34 |
石智红, 李胜利. 人工智能在产前超声中的应用和研究进展[J/OL]. 中华医学超声杂志(电子版), 2023, 20(1): 113-117.
|
35 |
Yang S, Niu J, Wu J, et al. Automatic ultrasound image report generation with adaptive multimodal attention mechanism[J]. Neurocomputing, 2021, 427: 40-49.
|
36 |
Zhu J, Hamdi A, Qi Y, et al. Medical sam 2: Segment medical images as video via segment anything model 2[DB/OL]. (2024-12-04)[2025-03-26].
|
37 |
Jiao J, Zhou J, Li X, et al. USFM: A universal ultrasound foundation model generalized to tasks and organs towards label efficient image analysis[J]. Med Image Anal, 2024, 96: 103202.
|
38 |
Zhang X, Chen EZ, Zhao L, et al. Adapting vision foundation models for real-time ultrasound image segmentation[DB/OL]. (2025-03-31)[2025-03-26].
|
39 |
Bai F, Du Y, Huang T, et al. M3d: Advancing 3d medical image analysis with multi-modal large language models[DB/OL]. (2024-03-31)[2025-03-26].
|
40 |
Wilson P, Minh N, Jamzad A, et al. ProstNFound: integrating foundation models with ultrasound domain knowledge and clinical context for robust prostate cancer detection[M]//Linguraru MG, Dou Q, Feragen A, et al. Medical Image Computing and Computer Assisted Intervention–MICCAI 2024. Cham: Springer, 2024.
|
41 |
Christensen M, Vukadinovic M, Yuan N, et al. Multimodal foundation models for echocardiogram interpretation[DB/OL]. (2023-09-02)[2025-03-26].
|
42 |
Le A, Liu H, Wang Y, et al. U2-BENCH: Benchmarking large vision-language models on ultrasound understanding[DB/OL]. (2025-05-30)[2025-03-26].
|