切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2018, Vol. 15 ›› Issue (10) : 773 -778. doi: 10.3877/cma.j.issn.1672-6448.2018.10.009

所属专题: 文献

浅表器官超声影像学

超声检查结合数学模型对TI-RADS 3~4类甲状腺结节良恶性的诊断
李璐1, 周娟1, 邓红艳1, 马雯婷1, 杭菁1, 叶新华1,(), 李勇2   
  1. 1. 210029 南京,南京医科大学第一附属医院超声医学科
    2. 210014 南京,江苏省农业科学院农产品质量安全与营养研究所
  • 出版日期:2018-10-01
  • 通信作者: 叶新华

Diagnosis of thyroid nodules by using ultrasound imaging analysis combined with mathematical models

Lu Li1, Juan Zhou1, Hongyan Deng1, Wenting Ma1, Jing Hang1, Xinhua Ye1,(), Yong Li2   

  1. 1. Department of Ultrasound, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
    2. Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Published:2018-10-01
  • Corresponding author: Xinhua Ye
  • About author:
    Corresponding author: Ye Xinhua, Email:
引用本文:

李璐, 周娟, 邓红艳, 马雯婷, 杭菁, 叶新华, 李勇. 超声检查结合数学模型对TI-RADS 3~4类甲状腺结节良恶性的诊断[J/OL]. 中华医学超声杂志(电子版), 2018, 15(10): 773-778.

Lu Li, Juan Zhou, Hongyan Deng, Wenting Ma, Jing Hang, Xinhua Ye, Yong Li. Diagnosis of thyroid nodules by using ultrasound imaging analysis combined with mathematical models[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2018, 15(10): 773-778.

目的

探讨超声影像结合数学模型在甲状腺结节良恶性判别诊断中的应用。

方法

回顾性分析2016年8月~12月在南京医科大学第一附属医院行超声检查发现的甲状腺结节,并均有手术或穿刺活检病理证实的患者共128例,纳入分析结节共170个。整理分析结节的超声图像特征信息,利用偏最小二乘-判别分析法(PLS-DA)和Logistic回归分析方法建立甲状腺结节良恶性风险预估模型并对其预测分析,然后采用逐步回归分析方法筛选出有统计学意义的特征变量,再次建模预测分析。

结果

在未删减自变量前,PLS-DA真阳性预测值(96.95%)、真阴性预测值(97.73%)较Logistic(89.86%、93.12%)高(P<0.05)。利用Stepwise方法筛选出重要变量包括甲状腺内部整体回声、形态、边缘、内部结构、强回声、纵横比和血管模式,再次建模后,PLS-DA真阳性预测率(98.12%)、真阴性预测率(98.49%)和Logistic真阳性预测率(95.09%)、真阴性预测率(95.31%)较筛选变量之前都有所提高(P<0.05),而且,PLS-DA真阳性预测率和真阴性预测率均明显高于Logistic(P<0.05)。

结论

PLS-DA和Logistic方法均可以构建甲状腺癌诊断模型,基于Stepwise筛选变量可以使诊断模型更加稳健,PLS-DA模型准确率结果要优于Logistic。

Objectives

In the present study, two mathematical models were constructed based on the characteristics of US image to discriminate the benign and malignant thyroid nodules.

Methods

A retrospective study was conducted in 128 patients with thyroid nodules from 2016/8 to 2016/12 in the First Affiliated Hospital of Nanjing Medical University. There were totally 170 pathologically-confirmed thyroid nodules. The gray scale image and color Doppler flow imaging (CDFI) sonograms of each thyroid nodule was reviewed. The data set was analyzed by the partial least squares-discriminant analysis (PLS-DA) and logistic regression (Logistic). Then the two methods were used after selecting statistically significant variables by stepwise regression analysis.

Result

The true positive and negative rates of PLS-DA were 96.95% and 97.73%, respectively, which were significantly higher than the true positive rate (89.86%) and true negative rate (93.12%) of Logistic (P<0.05). After stepwise regression analysis, seven significant variables were selected including the echogenicity of thyroid, shape, margin, internal content, calcification, orientation and vascularity. Based on the selected variables, the true positive and negative rates of PLS-DA were 98.12% and 98.49%, while the true positive and negative rates of Logistic were 95.09% and 95.31%, respectively. Compared to the values before variable selection the true rates of both methods were improved (P<0.05). Moreover, the result of PLS-DA was better than that of Logistic (P<0.05).

Conclusion

PLS-DA and Logistic based on the ultrasonic image are useful in the diagnosis of thyroid nodules. Based on the variables selected by stepwise regression analysis, the diagnosis models were built and the accuracy rate of PLS-DA and Logistic could be improved. Moreover, PLS-DA seems to be more powerful than Logistic.

表1 赋值变量
图1 PLS-DA模型训练集及预测集的散点图
表2 蒙特卡罗模拟运行1000次PLS-DA模型分析结果
图2 不同变量的VIP值
图3 Logistic回归模型训练集及预测集的散点图
表3 蒙特卡罗模拟运行1000次Logistic模型分析结果
表4 筛选变量后PLS-DA模型分析结果
表5 筛选变量后Logistic模型分析结果
1
Oetting A, Yen PM. New insights into thyroid hormone action [J]. Best Pract Res Clin Endocrinol Metab, 2007, 21(2): 193-208.
2
Paschou SA, Vryonidou A, Goulis DG. Thyroid nodules: A guide to assessment, treatment and follow-up [J]. Maturitas, 2017, 96: 1-9.
3
Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer [J]. Thyroid, 2016, 26(1): 1-133.
4
Yi KH. The revised 2016 Korean thyroid association guidelines for thyroid nodules and cancers: Differences from the 2015 American thyroid association guidelines [J]. Endocrinol Metab (Seoul), 2016, 31(3): 373-378.
5
Brown RE, Harave S. Diagnostic imaging of benign and malignant neck masses in children-a pictorial review [J]. Quant Imaging Med Surg, 2016, 6(5): 591-604.
6
Pemayun TG. Current diagnosis and management of thyroid nodules [J]. Acta Med Indones, 2016, 48(3): 247-257.
7
Hee SJ, Hwan BJ, Jin C, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: Revised Korean society of thyroid radiology consensus statement and recommendations [J].Korean J Radiol, 2016, 17(3): 370-95.
8
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid imaging, reporting and data system (TI-RADS): White paper of the ACR TI-RADS committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
9
Djukovic D, Zhang J, Raftery D. Colorectal cancer detection using targeted LC-MS metabolic profiling [J]. Methods Mol Biol, 2018, 1765: 229-240.
10
田刚,周明术,宋敏, 等. 基于胸腔积液肿瘤标志物的PLS-DA和ANN-MPL模型对肺癌的诊断价值分析 [J]. 成都医学院学报,2013, 8(5): 521-524.
11
韩放,吴晶辰,徐江峰, 等. 利用PLS-VIP方法筛选差异表达基因 [J]. 北京大学学报(自然科学版), 2009, 45(1): 1-5.
12
Musumarra G, Barresi V, Condorelli DF, et al. Genome-based identification of diagnostic molecular markers for human lung carcinomas by PLS-DA [J]. Comput Biol Chem, 2005, 29(3):183-95.
13
唐熙,王丰. 乳腺实性肿块超声良恶性鉴别诊断的Logistic回归模型 [J/CD]. 中华医学超声杂志(电子版), 2010, 7(6): 1023-1028.
14
Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham [J]. J Chronic Dis, 1967,20(7): 511-24.
15
Biondo S, Ramos E, Deiros M, et al. Prognostic factors for mortality in left colonic peritonitis: a new scoring system [J]. J Am Coll Surg, 2000, 191(6): 635-42.
16
张国龙,陈景武. 医学研究中Logistic回归与其他方法的结合应用 [J]. 数理医药学杂志, 2007, 20(6): 763-764.
17
潘群艳,马苏亚,薛尧, 等. Logistic回归模型评价剪切波弹性成像技术鉴别乳腺病灶良恶性的价值 [J/CD]. 中华医学超声杂志(电子版), 2013, 10(8): 669-673.
18
蒋红卫,夏结来. 偏最小二乘回归及其应用 [J]. 医学争鸣, 2003, 24(3): 280-283.
[1] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[2] 刘畅, 蒋洁, 胥雪冬, 崔立刚, 王淑敏, 陈文. 北京市海淀区医疗机构甲状腺超声检查及TIRADS分类基线调查[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 693-697.
[3] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[4] 伯小皖, 郭乐杭, 余松远, 李明宙, 孙丽萍. 甲状腺结节人工智能自动分割和分类系统的建立和验证[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 304-309.
[5] 刘健, 谢尚宏, 席雪华, 张波. BRAF V600E基因及ACR TI-RADS分类对Bethesda Ⅲ类甲状腺结节风险评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 57-62.
[6] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[7] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J/OL]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[8] 李卫民, 陈军民, 黄艳丽, 范晓芳, 韩文, 贾磊, 张俊超, 瞿辰. 基于中国甲状腺超声报告与数据系统分析超声在不同大小甲状腺结节中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(07): 743-748.
[9] 王卉, 薛宝睿, 李恭驰, 刘慧真, 雷霞, 李炳辉. 2型糖尿病患者下肢动脉硬化的影响因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 147-152.
[10] 王娜, 刘晓真, 叶木奇, 刘少中, 谢轶峰, 戴玉娟, 陈叶. 超微血流成像联合甲状腺成像报告和数据系统对桥本甲状腺炎背景下甲状腺良恶性结节检测效果的价值研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 287-290.
[11] 李俊, 彭健韵, 邱婉冰, 窦倩怡, 潘福顺, 梁瑾瑜. 甲状腺结节恶性风险分层(指南):ACR TI-RADS与C-TIRADS诊断效能及不同医师使用指南一致性的多中心回顾性比较研究[J/OL]. 中华普通外科学文献(电子版), 2023, 17(06): 401-407.
[12] 王本泉, 崔凡, 邱钧, 项本宏. 不同甲状腺手术方式对改善胰岛素抵抗的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 208-211.
[13] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[14] 马云霞, 于金勇, 魏淑凤, 韩臣子. 耳穴疗法对肝气郁结型甲状腺结节合并焦虑抑郁的临床疗效观察[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 348-354.
[15] 王理萍, 陈晓波. 甲状腺结节超声恶性危险分层中国指南在老年患者甲状腺结节良恶性诊断中的应用价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 35-39.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?