1 |
Li Y, Teng D, Ba J, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of mainland China [J]. Thyroid, 2020, 30(4): 568-579.
|
2 |
Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thyroid nodules seen on US images: deep learning may match performance of radiologists [J]. Radiology, 2019, 292(3): 695-701.
|
3 |
Zhou H, Jin Y, Dai L, et al. Differential diagnosis of benign and malignant thyroid nodules using deep learning radiomics of thyroid ultrasound images [J]. Eur J Radiol, 2020, 127: 108992.
|
4 |
Kim YJ, Choi Y, Hur SJ, et al. Deep convolutional neural network for classification of thyroid nodules on ultrasound: comparison of the diagnostic performance with that of radiologists [J]. Eur J Radiol, 2022, 152: 110335.
|
5 |
Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks [J]. Med Image Anal, 2019, 58: 101555.
|
6 |
肖冰心, 吴国柱. AI在甲状腺结节超声智能诊断中的应用 [J]. 中国医疗设备, 2023, 38(1): 165-170.
|
7 |
张蕊, 牛丽娟. 基于常规超声的深度学习技术在甲状腺结节良恶性鉴别中的研究进展[J]. 癌症进展, 2022, 20(8): 757-759, 765.
|
8 |
梁羽, 岳林先, 曹文斌, 等. 基于计算机辅助诊断的人工智能在甲状腺TI-RADS分类中的临床应用价值 [J]. 四川医学, 2021, 42(2): 127-131.
|
9 |
王婷婷, 闫瑞芳, 李潜, 等. 常规超声联合S-detect及超声弹性成像技术对鉴别良恶性甲状腺结节的临床应用价值 [J]. 世界复合医学, 2022, 8(8): 1-4, 9.
|
10 |
邢博缘, 赵云, 平杰, 等. 超声S-Detect技术对甲状腺TI-RADS 4类结节良恶性的诊断价值 [J]. 中国超声医学杂志, 2021, 37(5): 497-501.
|
11 |
方明娣, 彭梅, 毕玉. 人工智能S-Detect技术结合钙化特征对甲状腺结节的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 177-181.
|
12 |
李婷婷, 卢漫, 巫明钢, 等. 计算机辅助诊断系统对甲状腺结节的诊断价值研究[J/CD]. 中华医学超声杂志(电子版), 2019, 16(9): 660-664.
|
13 |
李盈盈, 李欣洋, 阎琳, 等. S-detect技术辅助住院医师诊断甲状腺影像报告和数据系统4类≤1 cm甲状腺结节的应用价值[J/OL]. 中华医学超声杂志(电子版), 2022 , 19(7): 682-687.
|
14 |
Sun C, Zhang Y, Chang Q, et al. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images [J]. Med Phys, 2020, 47(9): 3952-3960.
|