切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (03) : 304 -309. doi: 10.3877/cma.j.issn.1672-6448.2024.03.009

浅表器官超声影像学

甲状腺结节人工智能自动分割和分类系统的建立和验证
伯小皖1, 郭乐杭2, 余松远2, 李明宙3, 孙丽萍2,()   
  1. 1. 200072 上海,上海市第十人民医院肿瘤微创治疗中心超声医学科 同济大学医学院超声医学研究所医学院;200072 上海,上海市超声诊断与治疗工程研究中心 国家介入医学临床研究中心;202157 上海市第十人民医院崇明分院超声科
    2. 200072 上海,上海市第十人民医院肿瘤微创治疗中心超声医学科 同济大学医学院超声医学研究所医学院;200072 上海,上海市超声诊断与治疗工程研究中心 国家介入医学临床研究中心
    3. 100102 北京,北京医银人工智能科技有限公司
  • 收稿日期:2023-06-11 出版日期:2024-03-01
  • 通信作者: 孙丽萍
  • 基金资助:
    上海市科学技术委员会项目(21Y11910800)

Establishment and verification of an artificial intelligence system for automatic segmentation and classification of thyroid nodules

Xiaowan Bo1, Lehang Guo2, Songyuan Yu2, Mingzhou Li3, Liping Sun2,()   

  1. 1. Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai 200072, China;Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai 200072, China;Chongming Branch of Shanghai Tenth People's Hospital, Shanghai 202157, China
    2. Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai 200072, China;Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai 200072, China
    3. Beijing MedBank Artificial Intelligence Technology Co., Ltd, Beijing 100102, China
  • Received:2023-06-11 Published:2024-03-01
  • Corresponding author: Liping Sun
引用本文:

伯小皖, 郭乐杭, 余松远, 李明宙, 孙丽萍. 甲状腺结节人工智能自动分割和分类系统的建立和验证[J]. 中华医学超声杂志(电子版), 2024, 21(03): 304-309.

Xiaowan Bo, Lehang Guo, Songyuan Yu, Mingzhou Li, Liping Sun. Establishment and verification of an artificial intelligence system for automatic segmentation and classification of thyroid nodules[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(03): 304-309.

目的

开发一种能自动分割和诊断甲状腺结节良恶性的人工智能(AI)系统。

方法

收集872例2017年10月至2018年10月于上海市第十人民医院行穿刺活检确认的甲状腺结节患者的超声图像,利用AI方法对这些图片进行处理、检测等并最终反馈结果,建立AI系统,并对AI系统进行验证及内部测试。按照6∶2∶2的比例将所有收集的超声图像分为训练集、验证集和内部测试集进行初步验证测试。纳入外院209例甲状腺结节患者(共209个结节)超声图像再次进行验证,以穿刺或外科手术病理结果为诊断标准,计算低年资医师组、高年资医师组和AI系统诊断甲状腺结节良恶性的敏感度、特异度、准确性、阳性预测值、阴性预测值,并绘制三者诊断甲状腺结节良恶性的受试者操作特征曲线,计算曲线下面积(AUC),采用Delong检验比较AI系统与低年资医师组、高年资医师组的诊断效能。

结果

AI系统结节自动分割率在验证集、内部测试集和外部测试集上分别为98.8%、98.9%、98.1%。在外部测试集中,AI系统的诊断敏感度、特异度及准确性与低年资医师组、高年资医师组比较,差异均无统计学意义(P均>0.017)。而AI系统诊断甲状腺结节良恶性的AUC优于低年资医师组[0.885(95%CI:0.842~0.929) vs 0.823(95%CI:0.771~0.875),P=0.022],而与高年资医师组[0.932(95%CI:0.897~0.966)]类似(P=0.096)。

结论

本研究开发了一种能自动分割及诊断甲状腺结节良恶性的AI系统,其在外部测试集中具有较高的诊断效能,有望辅助低年资医师更准确鉴别甲状腺结节良恶性。

Objective

To develop an artificial intelligence (AI) system that can automatically segment and diagnose benign and malignant thyroid nodules.

Methods

The ultrasound images of 872 patients with thyroid nodules confirmed by puncture biopsy at Shanghai Tenth People's Hospital from October 2017 to October 2018 were collected, and the results were processed, monitored, and finally fed back by AI methods. Then, an AI system was established, and the system was verified and tested internally. According to a ratio of 6:2:2, all the collected ultrasound images were divided into training set, validation set, and internal test set for preliminary verification test. The ultrasound images of 209 patients with thyroid nodules (a total of 209 nodules) in other hospitals were re-verified, and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of a junior physician group, a senior physician group, and the AI system in the diagnosis of benign and malignant thyroid nodules were calculated using the pathological results of puncture biopsy or surgery as the diagnostic criteria. The receiver operation characteristic curves of the three in the diagnosis of benign and malignant thyroid nodules were plotted, and the area under the curve (AUC) was calculated. The Delong test was used to compare the diagnostic performance of the AI system with junior physicians and senior physicians.

Results

The automatic nodule segmentation rates of the AI system were 98.8%, 98.9%, and 98.1% in the validation set, internal test set, and external test set, respectively. In the external test set, there were no significant differences in the diagnostic sensitivity, specificity, or accuracy between the AI system and the junior or senior physician group (P>0.017 for all). The AUC of the AI system in the diagnosis of benign and malignant thyroid nodules was better than that of junior physicians [0.885 (95%CI: 0.842-0.929) vs 0.823 (95%CI: 0.771-0.875), P=0.022], but similar to that of senior physicians [0.932 (95%CI: 0.897-0.966)] (P=0.096).

Conclusion

We have developed an AI system that can automatically segment and diagnose benign and malignant thyroid nodules, which has high diagnostic efficacy in the external test set, and it is expected to assist junior physicians to more accurately identify benign and malignant thyroid nodules.

表1 人工智能系统辅助诊断甲状腺结节良恶性的场景展示
表2 2个数据集甲状腺结节患者基本临床资料比较
图1 人工智能(AI)系统自动分割、诊断结节良恶性示意图。图a:甲状腺左侧叶见一个低回声结节;图b:AI系统自动分割出结节轮廓;图c:AI系统最终给出辅助诊断结果:该结节为高度可疑恶性结节。结节穿刺病理结果证实为甲状腺乳头状癌
表3 外部测试集中人工智能系统、低年资医师和高年资医师对甲状腺结节的诊断表现[%(95%CI)]
图2 人工智能(AI)组、低年资医师组和高年资医师组在外部测试集中对甲状腺结节良恶性的诊断效能的受试者操作特征曲线
1
Li Y, Teng D, Ba J, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of mainland China [J]. Thyroid, 2020, 30(4): 568-579.
2
Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thyroid nodules seen on US images: deep learning may match performance of radiologists [J]. Radiology, 2019, 292(3): 695-701.
3
Zhou H, Jin Y, Dai L, et al. Differential diagnosis of benign and malignant thyroid nodules using deep learning radiomics of thyroid ultrasound images [J]. Eur J Radiol, 2020, 127: 108992.
4
Kim YJ, Choi Y, Hur SJ, et al. Deep convolutional neural network for classification of thyroid nodules on ultrasound: comparison of the diagnostic performance with that of radiologists [J]. Eur J Radiol, 2022, 152: 110335.
5
Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks [J]. Med Image Anal, 2019, 58: 101555.
6
肖冰心, 吴国柱. AI在甲状腺结节超声智能诊断中的应用 [J]. 中国医疗设备, 2023, 38(1): 165-170.
7
张蕊, 牛丽娟. 基于常规超声的深度学习技术在甲状腺结节良恶性鉴别中的研究进展[J]. 癌症进展, 2022, 20(8): 757-759, 765.
8
梁羽, 岳林先, 曹文斌, 等. 基于计算机辅助诊断的人工智能在甲状腺TI-RADS分类中的临床应用价值 [J]. 四川医学, 2021, 42(2): 127-131.
9
王婷婷, 闫瑞芳, 李潜, 等. 常规超声联合S-detect及超声弹性成像技术对鉴别良恶性甲状腺结节的临床应用价值 [J]. 世界复合医学, 2022, 8(8): 1-4, 9.
10
邢博缘, 赵云, 平杰, 等. 超声S-Detect技术对甲状腺TI-RADS 4类结节良恶性的诊断价值 [J]. 中国超声医学杂志, 2021, 37(5): 497-501.
11
方明娣, 彭梅, 毕玉. 人工智能S-Detect技术结合钙化特征对甲状腺结节的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 177-181.
12
李婷婷, 卢漫, 巫明钢, 等. 计算机辅助诊断系统对甲状腺结节的诊断价值研究[J/CD]. 中华医学超声杂志(电子版), 2019, 16(9): 660-664.
13
李盈盈, 李欣洋, 阎琳, 等. S-detect技术辅助住院医师诊断甲状腺影像报告和数据系统4类≤1 cm甲状腺结节的应用价值[J/OL]. 中华医学超声杂志(电子版), 2022 , 19(7): 682-687.
14
Sun C, Zhang Y, Chang Q, et al. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images [J]. Med Phys, 2020, 47(9): 3952-3960.
[1] 曾晴, 文华轩, 袁鹰, 廖伊梅, 秦越, 罗丹丹, 梁美玲, 彭桂艳, 林毅, 谭莹, 温昕, 黄文兰, 李胜利. 胎儿颅脑五横切面法的临床应用[J]. 中华医学超声杂志(电子版), 2024, 21(03): 243-250.
[2] 尹宏宇, 吴青青, 李晓菲. 颈后透明层和头臀长在妊娠11~13+6周双胎心脏畸形筛查中的价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 251-256.
[3] 朱惠娟, 邝海燕, 骆迎春, 邓光祁, 蒋凌晖, 汪圣, 王政, 孔一凡, 龙煜. 胎儿脐-门-体静脉系统异常分流的产前超声诊断及产后结局[J]. 中华医学超声杂志(电子版), 2024, 21(03): 257-267.
[4] 张焱, 刘春媚, 姚瑾, 陈苗苗, 徐雯, 黄品同. 超声O-RADS分类和临床特征对不同病理类型卵巢浆液性肿瘤的诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 268-274.
[5] 谢峰, 伍玉晗, 赵胜, 杨小红, 王玉波, 石珍, 范建华, 章敏. 产前超声和MRI诊断胎儿硬脑膜窦畸形的联合应用[J]. 中华医学超声杂志(电子版), 2024, 21(03): 275-280.
[6] 徐燕, 茹彤, 郑明明, 顾燕, 朱湘玉, 严陈晨, 陈玲, 戴晨燕. Miller-Dieker综合征胎儿产前超声、磁共振影像学特征及遗传学分析[J]. 中华医学超声杂志(电子版), 2024, 21(03): 281-287.
[7] 马旦杰, 黄品同, 徐琛, 周芳芳, 潘敏强. 超声造影LI-RADS系统联合甲胎蛋白对有无高危因素背景人群肝细胞癌的诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 288-296.
[8] 罗敏华, 王文平, 孔文韬. 肝脏炎性假瘤的超声造影表现及其诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 297-303.
[9] 刘昌盛, 江思, 童娟. 可视化超声引导下针刀治疗狭窄性腱鞘炎的疗效分析[J]. 中华关节外科杂志(电子版), 2024, 18(02): 310-316.
[10] 钟佩芝, 杜宇. 龋病诊断方法的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 73-79.
[11] 金从稳, 陈霖霖, 刘浩, 余有声, 陈本鑫. 超声联合细针穿刺定位在乳腺微小病灶切除中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 423-426.
[12] 邢益民, 张天飞, 戴慧勇. 胃肠充盈超声造影检查在反酸、嗳气患者临床诊断中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 303-306.
[13] 黄海, 程必盛, 黄健. 2024年欧洲泌尿外科学会年会:前列腺癌研究的前沿探索与未来趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 202-207.
[14] 彭子洋, 王志博, 王丹, 彭浩茜, 王蕾, 彭薇, 王娟娟, 李宇, 刘学民, 吴荣谦, 向俊西, 吕毅. 智能化辅助图像实时去雾技术在腹腔镜胆囊切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 328-333.
[15] 王伟利, 唐流康, 陈明政, 谢峰. 超声检查在肝胆外科中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 265-269.
阅读次数
全文


摘要