切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (05) : 522 -526. doi: 10.3877/cma.j.issn.1672-6448.2024.05.012

超声医学质量控制

人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用
杨敬武1, 周美君1, 陈雨凡2, 李素淑1, 何燕妮1, 崔楠1, 刘红梅1,()   
  1. 1. 510317 广州,暨南大学附属广东省第二人民医院超声科,肌骨运动医学超声研究所;510317 广州,广东省应急医学工程研究中心
    2. 510317 广州,暨南大学附属广东省第二人民医院超声科,肌骨运动医学超声研究所;510280 广州,南方医科大学第二临床医学院
  • 收稿日期:2023-06-12 出版日期:2024-05-01
  • 通信作者: 刘红梅
  • 基金资助:
    广州市特色技术项目(2023P-TS40); 广东省医学科研基金(A2023043); 广东省颐养健康慈善基金(JZ2022001-5); 广东省第二人民医院青年人才科研启动基金(YQ2020-011)

Artificial intelligence ultrasound combined with quality control circle activity comprehensively improves ability of junior sonographers to assess risk of thyroid nodules

Jingwu Yang1, Meijun Zhou1, Yufan Chen2, Sushu Li1, Yanni He1, Nan Cui1, Hongmei Liu1,()   

  1. 1. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China;Guangdong Engineering Technology Research Center of Emergency Medicine, Guangzhou 510317, China
    2. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China;The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
  • Received:2023-06-12 Published:2024-05-01
  • Corresponding author: Hongmei Liu
引用本文:

杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.

Jingwu Yang, Meijun Zhou, Yufan Chen, Sushu Li, Yanni He, Nan Cui, Hongmei Liu. Artificial intelligence ultrasound combined with quality control circle activity comprehensively improves ability of junior sonographers to assess risk of thyroid nodules[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(05): 522-526.

目的

探讨人工智能(AI)超声结合品管圈在低年资超声医师对甲状腺结节风险评估医疗质量中的效果。

方法

以广东省第二人民医院2019年1月至10月共119个有手术病理结果的甲状腺结节的二维声像图作为图像资料。利用AI超声结合品管圈活动对2位低年资住院医师(医师1、2)的甲状腺结节风险评估能力进行持续质量改进。甲状腺结节的良恶性以手术病理作为金标准。甲状腺结节的征象以高年资医师组识别结果为金标准。活动前、后,2位低年资超声医师均采用2017年美国放射学会发布的甲状腺影像报告与数据系统甲状腺结节超声指南评估甲状腺结节,并统计活动前、后2名低年资医师对甲状腺超声检查操作的规范性、图像存储合格率及患者对低年资医师的信任度。绘制活动前、后2位医师对甲状腺结节良恶性诊断的受试者操作特征(ROC)曲线,并采用DeLong检验比较2位低年资超声医师诊断效能的差异。采用McNemar检验比较2位低年资超声医师在活动前、后对甲状腺结节超声征象的识别准确率的差异。

结果

AI超声结合品管圈活动前、后,2名低年资医师对甲状腺结节声像图回声的识别准确率均有提高[医师1:47.90% vs 53.78%,医师2:45.38% vs 53.78%),差异具有统计学意义(P=0.031、0.004),其中医师2在活动前、后对甲状腺结节成分、形态、点状强回声方面的识别准确率均有所提高(69.75% vs 80.67%;58.82% vs 63.87%;52.10% vs 56.30%),差异具有统计学意义(P=0.004、0.021、0.031)。活动前、后2名低年资医师诊断甲状腺结节良恶性的ROC的曲线下面积明显提高(医师1:0.878 vs 0.921,P=0.036;医师2:0.824 vs 0.883,P=0.001)。此外,低年资医师的甲状腺超声检查操作规范合格率由60%提高至95%,图像存储合格率由50%提高至90%,患者对低年资医师的信任度由70%提高至90%。

结论

AI超声结合品管圈活动可全方位、多维度提高低年资超声医师的甲状腺结节恶性风险评估能力,改善医疗服务质量。

Objective

To explore the impact of artificial intelligence (AI) ultrasound and quality control circle (QCC) activity on junior sonographers' ability to accurately estimate the risk of thyroid nodules.

Methods

From January to October 2019, 119 two-dimensional ultrasonographic images of thyroid nodules with surgical pathology outcomes were collected in our hospital. AI ultrasound in conjunction with QCC activity was used to continually enhance two junior physicians' (doctors 1 and 2) ability to assess thyroid nodule risk. The gold standard for diagnosing benign and malignant thyroid nodules was surgical pathology. The signs of thyroid nodules recognized by two senior physicians were used as the gold standard. Two junior sonographers used the 2017 American College of Radiology Thyroid Imaging Reporting and Data System Thyroid Nodules (ACR TI-RADS) to assess thyroid nodules both before and after the activity. Then, both before and after the activity, whether thyroid ultrasound examination procedures were standard, the qualified rate of image storage, and patients' trust in younger physicians were examined. Receiver operating characteristic (ROC) curves for benign and malignant thyroid nodules were plotted before and after the activity, and the DeLong test was used to compare the difference in diagnostic efficiency between the two junior sonographers. The McNemar test was used to compare the recognition accuracy of the two junior sonographers (doctor 1 and doctor 2) for thyroid nodule ultrasound signs before and after the activity.

Results

The two young doctors' ability to identify the echo of thyroid nodules was increased by the use of AI ultrasound (doctor 1: 47.90% vs 53.78%, P=0.031; doctor 2: 45.38% vs 53.78%, P=0.004). Doctor 2's ability to recognize thyroid nodules' component (69.75% vs 80.67%, P=0.004), shape (58.82% vs 63.87%, P=0.021), and punctate hyperechogenicity (52.10% vs 56.30%, P=0.031) was similarly enhanced at the same time. The AUC values of the two junior doctors for diagnosing thyroid nodules were significantly higher after QCC activity than before (doctor 1: 0.878 vs 0.921, P=0.036; doctor 2: 0.824 vs 0.883, P=0.001). The qualified rate of image storage grew from 50% to 90%, the qualified rate of thyroid ultrasound examination by junior physicians improved from 60% to 95%, and the patients' trust in junior physicians increased from 70% to 90% as a result of QCC activity.

Conclusion

AI ultrasound combined with QCC activity can improve the ability of junior sonographers to assess the malignant risk of thyroid nodules in an all-round and multi-dimensional way, and improve the quality of medical services.

表1 活动前、后低年资医师识别甲状腺结节超声征象与高年资医师的一致率比较[个(%)]
图1 人工智能超声辅助诊断系统(AIMTIRADS)结合品管圈活动前、后2位低年资医师诊断甲状腺结节良恶性的受试者操作特征曲线
表2 AIMTIRADS结合品管圈活动前、后低年资医师诊断甲状腺结节良恶性的结果比较
图2 甲状腺超声检查规范性流程图 注:CDFI为彩色多普勒超声成像
1
Durante C, Grani G, Lamartina L, et al. The diagnosis and management of thyroid nodules: a review[J]. JAMA, 2018, 319(9): 914-924.
2
Li M, Dal Maso L, Vaccarella S. Global trends in thyroid cancer incidence and the impact of overdiagnosis[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 468-470.
3
Hoang JK, Middleton WD, Farjat AE, et al. Reduction in thyroid nodule biopsies and improved accuracy with american college of radiology thyroid imaging reporting and data system[J]. Radiology, 2018, 287(1): 185-193.
4
Ha EJ, Na DG, Baek JH, et al. US fine-needle aspiration biopsy for thyroid malignancy: diagnostic performance of seven society guidelines applied to 2000 thyroid nodules[J]. Radiology, 2018, 287(3): 893-900.
5
麦武平, 周美君, 胡叶, 等. AI超声辅助诊断系统在低年资医师诊断甲状腺结节良恶性中的应用[J]. 中国超声医学杂志, 2021, 37(3): 248-251.
6
宋丹琳, 郑静, 倪志鹏, 等. 超声图像人工智能辅助对甲状腺结节定性诊断价值的研究[J]. 中国临床医学影像杂志, 2023, 34(2): 87-90.
7
Chen Y, Gao Z, He Y, et al. An artificial intelligence model based on ACR TI-RADS characteristics for US diagnosis of thyroid nodules[J]. Radiology, 2022, 303(3): 613-619.
8
王聪, 张佩, 焦娟莉, 等. 品管圈活动在缩短内镜下治疗胃肠息肉患者平均住院日中的应用[J]. 空军医学杂志, 2022, 38(2): 154-157.
9
吴芳芳. 品管圈活动提高结肠镜检查前肠道准备合格率的临床研究[J]. 中国肛肠病杂志, 2022, 42(8): 76-77.
10
张卫平, 陈莉, 袁新春, 等. 品管圈活动在提高超声医学科住院医师医疗质量中的作用[J/OL]. 中华医学超声杂志(电子版), 2023, 20(1): 103-107.
[1] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[2] 王益佳, 周青, 曹省, 袁芳洁, 周妍, 张梅. 中国经胸超声心动图检查存图及报告质控现状分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 657-663.
[3] 周易, 张红梅, 尹立雪, 杨浩, 付培. 四川省超声医学质量控制指标动态变化趋势分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 664-670.
[4] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[5] 王晓娜, 张宁, 宋伟, 杨明, 李丽, 薛红元. 河北省超声医学质量管理与控制现状分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 675-680.
[6] 张亚庆, 黄旴宁, 许珊珊, 刘小蓝. 海南省二级与三级医院超声医学质量控制指标分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 681-685.
[7] 刘畅, 蒋洁, 胥雪冬, 崔立刚, 王淑敏, 陈文. 北京市海淀区医疗机构甲状腺超声检查及TIRADS分类基线调查[J]. 中华医学超声杂志(电子版), 2024, 21(07): 693-697.
[8] 吴禾禾, 马春亮, 常青, 陈宇, 牛丽娟, 王勇. 超声医学质量控制与住院医师规范化培训相结合的实践探讨[J]. 中华医学超声杂志(电子版), 2024, 21(07): 698-701.
[9] 莫莹, 李文秀, 李刚, 王霄芳, 王强, 丁文虹. 超声心动图在三尖瓣下移畸形中的临床应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(07): 702-708.
[10] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[11] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[12] 王子杨, 杨文利, 李栋军, 陈伟, 赵琦, 李逸丰, 崔蕊, 沈琳, 刘倩, 魏串串. 高频线阵探头对眼球壁的临床观察[J]. 中华医学超声杂志(电子版), 2024, 21(06): 580-584.
[13] 夏靖涵, 林凤娇, 王胰, 丁戈琦, 张清凤, 张红梅, 谢盛华, 李明星, 尹立雪, 李文华. 二尖瓣空间变化联合左心房应变对肥厚型心肌病合并左心室流出道梗阻的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 585-592.
[14] 王岚, 徐斌胜, 谢乐. 肥厚型心肌病的经胸超声心动图诊断与心电图表现特征[J]. 中华医学超声杂志(电子版), 2024, 21(06): 593-596.
[15] 牛梓涵, 李文波, 孝梦甦, 张青, 张一休, 朱庆莉. 超声影像教学融合思政元素的实践初探与效果评估[J]. 中华医学超声杂志(电子版), 2024, 21(06): 597-601.
阅读次数
全文


摘要