1 |
Waks AG, Winer EP. Breast Cancer Treatment: A Review Breast Cancer Treatment in 2019[J]. JAMA, 2019, 321(3): 288-300.
|
2 |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3 |
Khayamian MA, Ansaryan S, Tafti SR, et al. Ultrasound assisted electrochemical distinction of normal and cancerous cells[J]. Sens Actuators B-Chem, 2018, 255(1): 1-7.
|
4 |
Ho YJ, Chang YC, Yeh CK. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization[J]. Theranostics, 2016, 6(3): 392-403.
|
5 |
Park D, Won J, Shin U, et al. Transdermal Drug Delivery Using a Specialized Cavitation Seed for Ultrasound[J]. ITUFF, 2019, 66(6): 1057-1064.
|
6 |
Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery[J]. Adv Drug Del Rev, 2008, 60(10): 1137-1152.
|
7 |
Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents[J]. Theranostics, 2012, 2(12): 1208-1222.
|
8 |
Lee H, Kim H, Han H, et al. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications[J]. Biomed Eng Lett, 2017, 7(2): 59-69.
|
9 |
Korosoglou G, Hardt SE, Bekeredjian R, et al. Ultrasound exposure can increase the membrane permeability of human neutrophil granulocytes containing microbubbles without causing complete cell destruction[J]. Ultrasound Med Biol, 2006, 32(2): 297-303.
|
10 |
Karshafian R, Bevan PD, Williams R, et al. Sonoporation by Ultrasound-Activated Microbubble Contrast Agents: Effect of Acoustic Exposure Parameters on Cell Membrane Permeability and Cell Viability[J]. Ultrasound Med Biol, 2009, 35(5): 847-860.
|
11 |
Fan P, Yang D, Wu J, et al. Cell-cycle-dependences of membrane permeability and viability observed for HeLa cells undergoing multi-bubble-cell interactions[J]. Ultrason Sonochem, 2019, 53: 178-186.
|
12 |
Wang LY, Zheng SS. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy[J]. J Zhejiang Univ Sci B, 2019, 20(4): 291-299.
|
13 |
Abenojar EC, Nittayacharn P, de Leon AC, et al. Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents[J]. Langmuir, 2019, 35(31): 10192-10202.
|
14 |
Jing Y, Zhang XJ, Cai HJ, et al. Ultrasound-targeted microbubble destruction improved the antiangiogenic effect of Endostar in triple-negative breast carcinoma xenografts[J]. J Cancer Res Clin Oncol, 2019, 145(5): 1191-1200.
|
15 |
Li Y, An H, Wang X, et al. Ultrasound-triggered release of sinoporphyrin sodium from liposome-microbubble complexes and its enhanced sonodynamic toxicity in breast cancer[J]. Nano Res, 2018, 11(2): 1038-1056.
|
16 |
Ikeda H, Nagaoka R, Lafond M, et al. Singular value decomposition of received ultrasound signal to separate tissue, blood flow, and cavitation signals[J]. Jpn J Appl Phys, 2018, 57(7S1): 1-6.
|
17 |
Paškevičiūtė M, Petrikaitė V. Overcoming transporter-mediated multidrug resistance in cancer: failures and achievements of the last decades[J]. Drug Deliv Transl Res, 2019, 9(1): 379-393.
|
18 |
Austin Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2)[J]. Oncogene, 2003, 22(47): 7340-7358.
|
19 |
Bai M, Shen M, Teng Y, et al. Enhanced therapeutic effect of Adriamycin on multidrug resistant breast cancer by the ABCG2-siRNA loaded polymeric nanoparticles assisted with ultrasound[J]. Oncotarget, 2015, 6(41): 43779-43790.
|
20 |
Logan K, Foglietta F, Nesbitt H, et al. Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel, doxorubicin and Rose Bengal[J]. Eur J Pharm Biopharm, 2019, 139: 224-231.
|
21 |
Prasad C, Banerjee R. Ultrasound-Triggered Spatiotemporal Delivery of Topotecan and Curcumin as Combination Therapy for Cancer[J]. J Pharmacol Exp Ther, 2019, 370(3): 876-893.
|
22 |
Rong N, Zhou H, Liu R, et al. Ultrasound and microbubble mediated plasmid DNA uptake: A fast, global and multi-mechanisms involved process[J]. J Control Release, 2018, 273: 40-50.
|
23 |
Zhao R, Liang X, Zhao B, et al. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer[J]. Biomaterials, 2018, 173: 58-70.
|
24 |
Eisenbrey JR, Shraim R, Liu JB, et al. Sensitization of Hypoxic Tumors to Radiation Therapy Using Ultrasound-Sensitive Oxygen Microbubbles[J]. Int J Radiat Oncol Biol Phys, 2018, 101(1): 88-96.
|
25 |
Delaney LJ, Ciraku L, Oeffinger BE, et al. Breast Cancer Brain Metastasis Response to Radiation After Microbubble Oxygen Delivery in a Murine Model[J]. Ultrasound Med, 2019, 38(12): 3221-3228.
|
26 |
Cao Y, Chen Y, Yu T, et al. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound[J]. Theranostics, 2018, 8(5): 1327-1339.
|
27 |
Qu N, Shi D, Shang M, et al. Breast Cancer Cell Line Phenotype Affects Sonoporation Efficiency Under Optimal Ultrasound Microbubble Conditions[J]. Med Sci Monit, 2018, 24: 9054-9062.
|
28 |
Heeke S, Mograbi B, Alix-Panabières C, et al. Never Travel Alone: The Crosstalk of Circulating Tumor Cells and the Blood Microenvironment[J]. Cells, 2019, 8(7): 714-726.
|
29 |
Shi G, Cui W, Benchimol M, et al. Isolation of Rare Tumor Cells from Blood Cells with Buoyant Immuno-Microbubbles[J]. PLoS One, 2013, 8(3):1-9.
|
30 |
Wang G, Benasutti H, Jones JF, et al. Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles[J]. Colloids Surf B Biointerfaces, 2018, 161: 200-209.
|