1 |
白博, 韩慧娟, 周毓青. IOTA简易原则预测卵巢肿瘤良恶性的临床价值研究 [J/CD]. 中华医学超声杂志(电子版), 2018, 15(8): 620-622.
|
2 |
Chen H, Qian L, Jiang M, et al. Performance of IOTA ADNEX model in evaluating adnexal masses in a gynecological oncology center in China [J]. Ultrasound Obstet Gynecol, 2019, 54(6): 815-822.
|
3 |
Van Calster B, Van Hoorde K, Valentin L, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study [J]. BMJ, 2014, 349: g5920.
|
4 |
Høgdall E. Approaches to the detection of ovarian cancer [J]. Scand J Clin Lab Invest Suppl, 2016, 245: S49-S53.
|
5 |
Meys E, Jeelof LS, Achten N, et al. Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods [J]. Ultrasound Obstet Gynecol, 2017, 49(6): 784-792.
|
6 |
李玲, 周一波, 吴美艳, 等. 超声ADNEX模型对卵巢肿瘤的诊断价值 [J]. 中华内分泌外科杂志, 2019, 13(1): 67-71.
|
7 |
Guerriero S, Saba L, Ajossa S, et al. Assessing the reproducibility of the IOTA simple ultrasound rules for classifying adnexal masses as benign or malignant using stored 3D volumes [J]. Eur J Obstet Gynecol Reprod Biol, 2013, 171(1): 157-160.
|
8 |
Nunes N, Yazbek J, Ambler G, et al. Prospective evaluation of the IOTA logistic regression model LR2 for the diagnosis of ovarian cancer [J]. Ultrasound Obstet Gynecol, 2012, 40(3): 355-359.
|
9 |
Sayasneh A, Ferrara L, De Cock B, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model: a multicentre external validation study [J]. Br J Cancer, 2016, 115(5): 542-548.
|
10 |
Szubert S, Wojtowicz A, Moszynski R, et al. External validation of the IOTA ADNEX model performed by two independent gynecologic centers [J]. Gynecol Oncol, 2016, 142(3): 490-495.
|
11 |
Wynants L, Timmerman D, Verbakel JY, et al. Clinical utility of risk models to refer patients with adnexal masses to specialized oncology care: multicenter external validation using decision curve analysis [J]. Clin Cancer Res, 2017, 23(17): 5082-5090.
|
12 |
Karlsen MA, Hogdall EV, Christensen IJ, et al. A novel diagnostic index combining HE4, CA125 and age may improve triage of women with suspected ovarian cancer - An international multicenter study in women with an ovarian mass [J]. Gynecol Oncol, 2015, 138(3): 640-646.
|
13 |
Dochez V, Caillon H, Vaucel E, et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review [J]. J Ovarian Res, 2019, 12(1): 28.
|
14 |
Ahmed AA, Abdou AM. Diagnostic accuracy of CA125 and HE4 in ovarian carcinoma patients and the effect of confounders on their serum levels [J]. Curr Probl Cancer, 2019, 43(5): 450-460.
|
15 |
Shin KH, Kim HH, Kwon BS, et al. Clinical usefulness of cancer antigen (CA) 125, human epididymis 4, and CA72-4 levels and risk of ovarian malignancy algorithm values for diagnosing ovarian tumors in Korean patients with and without endometriosis [J]. Ann Lab Med, 2020, 40(1): 40-47.
|
16 |
Wang D, Xiang Y, Wu M, et al. Clinicopathological characteristics and prognosis of adult ovarian granulosa cell tumor: a single-institution experience in China [J]. Onco Targets Ther, 2018, 11: 1315-1322.
|
17 |
Levin G, Zigron R, Haj-Yahya R, et al. Granulosa cell tumor of ovary: a systematic review of recent evidence [J]. Eur J Obstet Gynecol Reprod Biol, 2018, 225: 57-61.
|
18 |
龚时鹏, 陈咏宁, 张雅迪, 等. 血清CA125、HE4和哥本哈根指数在卵巢上皮性肿瘤良恶性鉴别诊断中的价值 [J]. 南方医科大学学报, 2017, 37(5): 628-632.
|
19 |
Meys E, Jeelof LS, Achten N, et al. Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods [J]. Ultrasound Obstet Gynecol, 2017, 49(6): 784-792.
|