切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2020, Vol. 17 ›› Issue (12) : 1213 -1219. doi: 10.3877/cma.j.issn.1672-6448.2020.12.013

所属专题: 文献

妇产科超声影像学

ADNEX模型联合哥本哈根指数对卵巢肿瘤良恶性的诊断价值
李欢1, 李晓琴1, 吴秀花1, 施燕芸1,()   
  1. 1. 213000 南京医科大学附属常州市第二人民医院超声科
  • 收稿日期:2020-04-23 出版日期:2020-12-01
  • 通信作者: 施燕芸

Diagnostic value of ADNEX model combined with Copenhagen index in differentiating benign from malignant ovarian tumors

Huan Li1, Xiaoqin Li1, Xiuhua Wu1, Yanyun Shi1,()   

  1. 1. Department of Ultrasound, Changzhou No.2 People’s Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China
  • Received:2020-04-23 Published:2020-12-01
  • Corresponding author: Yanyun Shi
  • About author:
    Corresponding author: Shi Yanyun, Email:
引用本文:

李欢, 李晓琴, 吴秀花, 施燕芸. ADNEX模型联合哥本哈根指数对卵巢肿瘤良恶性的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(12): 1213-1219.

Huan Li, Xiaoqin Li, Xiuhua Wu, Yanyun Shi. Diagnostic value of ADNEX model combined with Copenhagen index in differentiating benign from malignant ovarian tumors[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2020, 17(12): 1213-1219.

目的

分析比较ADNEX模型、哥本哈根指数(CPH-I)以及两者联合对卵巢肿瘤良恶性的诊断效能,探讨预测卵巢恶性肿瘤的独立危险因素。

方法

回顾性分析2018年1月至2019年12月于常州市第二人民医院妇科接受手术治疗的185例卵巢肿瘤病例的190个卵巢肿块,进行ADNEX模型分析,计算CPH-I,以病理结果为金标准,绘制受试者操作特征(ROC)曲线,计算敏感度、特异度、约登指数,分析比较ADNEX模型、CPH-I以及两者联合对卵巢肿瘤良恶性的诊断效能,并对两者涉及变量作单因素及多因素分析。采用独立样本t检验比较良恶性组间年龄、肿瘤最大径的差异,采用秩和检验比较组间糖抗原125(CA125)、人附睾蛋白4(HE4)、实性部分最大径的差异,采用Fisher精确检验和校正χ2检验比较良恶性组间小室数量情况、乳头数量情况、有无声影及有无腹水的差异;单因素分析差异有统计学意义的指标,以卵巢肿瘤良恶性预测为因变量进行多因素二元Logistic回归分析。

结果

ADNEX模型、CPH-I及两者联合诊断卵巢肿瘤良恶性的敏感度分别为65%、65%、74%,特异度分别为99%、94%、94%,曲线下面积分别为0.82、0.80、0.84。单因素分析显示,良性组和恶性组间年龄[(41.99±14.75)岁vs (54.74±13.39)岁]、CA125[(18.39(12.11~36.98)U/ml vs 124.05(41.27~1121.35)U/ml)]、HE4[40.20(32.93~50.55)pmol/L vs 78.65(48.38~639.80)pmol/L]、肿瘤最大径[(6.89±3.34)cm vs(8.91±3.91)cm]、实性部分最大径[0.00(0.00~0.00)cm vs 4.75(2.50~7.70)cm]、>3个乳头数(1.92% vs 26.47%)、腹水(0 vs 32.35%)比较,差异均具有统计学意义(t=-4.64,P<0.001;Z=-5.90,P<0.001;Z=-6.32,P<0.001;t=-3.11,P=0.002;Z=-9.80,P<0.001;P<0.001;χ2=47.80,P<0.001);多因素分析显示年龄、HE4、实性成分最大径、>3个乳头数是卵巢恶性肿瘤的独立危险因素(OR=1.059,P=0.002;OR=1.003,P=0.004;OR=1.533,P<0.001;OR=60.930,P<0.001)。

结论

ADNEX模型和CPH-I对卵巢肿瘤良恶性的鉴别均有一定的临床价值,两者联合运用能提升诊断敏感度。年龄、HE4、实性成分最大径、>3个乳头数是预测卵巢恶性肿瘤的独立危险因素。

Objective

To analyze and compare the efficacy of ADNEX model, Copenhagen index (CPH-I), and the combination of them in the diagnosis of benign and malignant ovarian tumors, and to identify the independent factors for the prediction of ovarian malignancy.

Methods

A total of 186 patients with 190 ovarian tumors who underwent surgical treatment at the Department of Gynaecology of Changzhou No.2 People's Hospital from January 2018 to December 2019 were enrolled in this retrospective analysis. ADNEX model analysis and CPH-I calculation were performed to estimate the possibility of malignancy. Using the pathologic results as the gold standard, ROC curve analysis was performed to calculate the sensitivity, specificity, and Youden index of ADNEX model, CPH-I, and the combination of both. The correlation between the variables and ovarian malignancies was also calculated. The independent sample t test was used to compare the difference in age and the maximum diameter of tumor between the benign and malignant groups, the rank sum test was used to compare the difference in carbohydrate antigen 125 (CA125), human epididymis protein 4 (HE4), and the largest diameter of the solid part of the tumor between groups, and the Fisher exact test and correction χ2 test were used to compare the number of compartments, number of papillae, acoustic shadow, and ascites between groups. Single factor analysis and multivariate binary Logistic regression analysis were carried out to identify the predictive factors for ovarian malignancy.

Results

The sensitivities of ADNEX model, CPH-I, and the combination of both in the differential diagnosis of benign and malignant ovarian tumors were 65%, 65%, and 74%, the specificities were 99%, 94%, and 94%, and the areas under the ROC curves were 0.82, 0.80, and 0.84, respectively. Single factor analysis showed that the differences of age [(41.99±14.75) years vs (54.74±13.39) years, t=-4.64, P<0.001], CA125 [(18.39 (12.11~36.98) U/ml vs 124.05 (41.27~1121.35) U/ml), Z=-5.90, P<0.001], HE4 [40.20 (32.93~50.55) pmol/Lvs 78.65 (48.38~639.80) pmol/L, Z=-6.32, P<0.001], maximum diameter of tumor [(6.89±3.34) cm vs (8.91±3.91) cm, t=-3.11, P=0.002], the largest diameter of the solid part of tumor [0.00 (0.00~0.00) cm vs 4.75 (2.50~7.70) cm, Z=-9.80, P<0.001], more than three papillae (1.92% vs 26.47%, P<0.001), and ascites (0 vs 32.35%, χ2=47.80, P<0.001) were statistically significant between the benign and malignant groups. Multivariate analysis showed that age, HE4, the largest diameter of the solid part of tumor, and more than three papillae were independent risk factors for malignant ovarian tumors (OR [odds ratio]=1.059, P=0.002; OR=1.003, P=0.004; OR=1.533, P<0.001; OR=60.930, P<0.001).

Conclusion

Both ADNEX model and CPH-I have important clinical value in the differentiation of benign and malignant ovarian tumors, and the combination of them has a higher sensitivity. Age, HE4, maximum diameter of the solid part of tumor, and number of papillae more than 3 are independent risk factors for malignant ovarian tumors.

表1 190个卵巢肿块病理类型明细
图1 卵巢交界性浆液性囊腺瘤。图a为常规超声图,示左侧卵巢内测及最大直径约8.3 cm的混合性肿块,ADNEX模型判断恶性风险为59.6%,哥本哈根指数概率预测值为0.045。图b为病理图,镜下见纤维间质为轴心的乳头样结构,内衬复层的浆液性细胞,病理结果示左侧卵巢交界性浆液性囊腺瘤(HE×100)
图2 卵巢颗粒细胞瘤。图a为常规超声图,示右侧卵巢内测及最大直径约8.7 cm的混合性肿块,ADNEX模型判断恶性风险为90.6%,哥本哈根指数概率预测值为0.021。图b为病理图,镜下见瘤细胞形似卵巢粒层细胞,呈滤泡状及岛状,病理结果示右侧卵巢颗粒细胞瘤(HE×100)
图3 卵巢透明细胞癌。图a为常规超声图,示左侧卵巢内测及最大直径约7.8 cm的混合性肿块,ADNEX模型判断恶性风险为94.7%,哥本哈根指数概率预测值为0.360。图b为病理图,镜下见嗜酸性颗粒细胞和透明细胞呈乳头状和小管小囊状结构,病理结果示左侧卵巢透明细胞癌Ⅰ期(HE×40)
图4 ADNEX模型、哥本哈根指数及两者联合诊断卵巢肿瘤良恶性的受试者操作特征曲线
表2 ADNEX、CPH-I及联合诊断效能表
表3 诊断卵巢恶性肿瘤的单因素分析
表4 诊断卵巢恶性肿瘤的多因素Logistic回归分析
1
白博, 韩慧娟, 周毓青. IOTA简易原则预测卵巢肿瘤良恶性的临床价值研究 [J/CD]. 中华医学超声杂志(电子版), 2018, 15(8): 620-622.
2
Chen H, Qian L, Jiang M, et al. Performance of IOTA ADNEX model in evaluating adnexal masses in a gynecological oncology center in China [J]. Ultrasound Obstet Gynecol, 2019, 54(6): 815-822.
3
Van Calster B, Van Hoorde K, Valentin L, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study [J]. BMJ, 2014, 349: g5920.
4
Høgdall E. Approaches to the detection of ovarian cancer [J]. Scand J Clin Lab Invest Suppl, 2016, 245: S49-S53.
5
Meys E, Jeelof LS, Achten N, et al. Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods [J]. Ultrasound Obstet Gynecol, 2017, 49(6): 784-792.
6
李玲, 周一波, 吴美艳, 等. 超声ADNEX模型对卵巢肿瘤的诊断价值 [J]. 中华内分泌外科杂志, 2019, 13(1): 67-71.
7
Guerriero S, Saba L, Ajossa S, et al. Assessing the reproducibility of the IOTA simple ultrasound rules for classifying adnexal masses as benign or malignant using stored 3D volumes [J]. Eur J Obstet Gynecol Reprod Biol, 2013, 171(1): 157-160.
8
Nunes N, Yazbek J, Ambler G, et al. Prospective evaluation of the IOTA logistic regression model LR2 for the diagnosis of ovarian cancer [J]. Ultrasound Obstet Gynecol, 2012, 40(3): 355-359.
9
Sayasneh A, Ferrara L, De Cock B, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model: a multicentre external validation study [J]. Br J Cancer, 2016, 115(5): 542-548.
10
Szubert S, Wojtowicz A, Moszynski R, et al. External validation of the IOTA ADNEX model performed by two independent gynecologic centers [J]. Gynecol Oncol, 2016, 142(3): 490-495.
11
Wynants L, Timmerman D, Verbakel JY, et al. Clinical utility of risk models to refer patients with adnexal masses to specialized oncology care: multicenter external validation using decision curve analysis [J]. Clin Cancer Res, 2017, 23(17): 5082-5090.
12
Karlsen MA, Hogdall EV, Christensen IJ, et al. A novel diagnostic index combining HE4, CA125 and age may improve triage of women with suspected ovarian cancer - An international multicenter study in women with an ovarian mass [J]. Gynecol Oncol, 2015, 138(3): 640-646.
13
Dochez V, Caillon H, Vaucel E, et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review [J]. J Ovarian Res, 2019, 12(1): 28.
14
Ahmed AA, Abdou AM. Diagnostic accuracy of CA125 and HE4 in ovarian carcinoma patients and the effect of confounders on their serum levels [J]. Curr Probl Cancer, 2019, 43(5): 450-460.
15
Shin KH, Kim HH, Kwon BS, et al. Clinical usefulness of cancer antigen (CA) 125, human epididymis 4, and CA72-4 levels and risk of ovarian malignancy algorithm values for diagnosing ovarian tumors in Korean patients with and without endometriosis [J]. Ann Lab Med, 2020, 40(1): 40-47.
16
Wang D, Xiang Y, Wu M, et al. Clinicopathological characteristics and prognosis of adult ovarian granulosa cell tumor: a single-institution experience in China [J]. Onco Targets Ther, 2018, 11: 1315-1322.
17
Levin G, Zigron R, Haj-Yahya R, et al. Granulosa cell tumor of ovary: a systematic review of recent evidence [J]. Eur J Obstet Gynecol Reprod Biol, 2018, 225: 57-61.
18
龚时鹏, 陈咏宁, 张雅迪, 等. 血清CA125、HE4和哥本哈根指数在卵巢上皮性肿瘤良恶性鉴别诊断中的价值 [J]. 南方医科大学学报, 2017, 37(5): 628-632.
19
Meys E, Jeelof LS, Achten N, et al. Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods [J]. Ultrasound Obstet Gynecol, 2017, 49(6): 784-792.
[1] 马士红, 李晓琴, 施燕芸. 四种恶性风险指数对卵巢肿瘤良恶性鉴别的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(11): 1108-1113.
[2] 刘真真, 石志敏, 徐钟慧, 李建初, 姜玉新. IOTA ADNEX模型与简单法则对附件区疑难病变的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(11): 1084-1089.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[5] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[6] 邓洁, 王一然, 王平. 卵巢透明细胞癌患者并发静脉血栓栓塞症的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 150-157.
[7] 初磊, 郭翼, 童晓文. Periostin在妇科恶性肿瘤中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 145-149.
[8] 宫晗, 聂丹, 黄玥, 李征宇. 聚腺苷酸二磷酸核糖聚合酶抑制剂在复发性卵巢癌维持治疗中的作用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(01): 1-6.
[9] 陈超, 王金娟, 李琳. 卵巢硬化性间质瘤的临床特点分析[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 465-471.
[10] 龚照林, 李克敏, 尹如铁. 早期上皮性卵巢癌化学治疗现状与思考[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(01): 16-22.
[11] 赵倩颖, 郄明蓉. 上皮性卵巢癌的病理及分子诊断[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 605-611.
[12] 贾静, 石新兰, 李玉广, 李振强, 孙磊. 卵巢交界性浆黏液性肿瘤临床病理学分析及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(05): 571-578.
[13] 唐英, 李均, 胡辉权, 徐凡, 陈明星. 血小板与淋巴细胞比值对卵巢癌患者国际妇产科联盟临床分期的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(03): 268-274.
[14] 刘育昕, 王子晗, 张艺馨, 栾永婕, 孟凯. 肾母细胞瘤基因1在卵巢疾病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 178-183.
[15] 王可珺, 李吉镇, 马标, 续慧超, 谌红珊, 刘雷. 肌酐/胱抑素C对晚期上皮性卵巢癌术后并发症的预测价值[J]. 中华诊断学电子杂志, 2023, 11(01): 49-55.
阅读次数
全文


摘要