切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (05) : 484 -490. doi: 10.3877/cma.j.issn.1672-6448.2024.05.006

妇产科超声影像学

探讨IOTA、GI-RADS及O-RADS在附件肿瘤良恶性鉴别诊断中的价值
卢菊1, 赵胜1,(), 范建华1, 高艳多1   
  1. 1. 430000 武汉,湖北省妇幼保健院超声科
  • 收稿日期:2023-09-15 出版日期:2024-05-01
  • 通信作者: 赵胜
  • 基金资助:
    湖北省卫生计生委科研项目(WJ2018H0140)

Performance of IOTA simple rules, GI-RADS, and O-RADS in differentiating between benign and malignant adnexal lesions

Ju Lu1, Sheng Zhao1,(), Jianhua Fan1, Yanduo Gao1   

  1. 1. Department of Ultrasonography, Women and Child Health Hospital of Hubei Province, Wuhan 430000, China
  • Received:2023-09-15 Published:2024-05-01
  • Corresponding author: Sheng Zhao
引用本文:

卢菊, 赵胜, 范建华, 高艳多. 探讨IOTA、GI-RADS及O-RADS在附件肿瘤良恶性鉴别诊断中的价值[J]. 中华医学超声杂志(电子版), 2024, 21(05): 484-490.

Ju Lu, Sheng Zhao, Jianhua Fan, Yanduo Gao. Performance of IOTA simple rules, GI-RADS, and O-RADS in differentiating between benign and malignant adnexal lesions[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(05): 484-490.

目的

探讨国际卵巢肿瘤分析(IOTA)简单法则、超声妇科影像报告与数据系统(GI-RADS)分类及卵巢-附件影像报告和数据系统(O-RADS)分类在附件肿瘤良恶性鉴别诊断中的价值。

方法

回顾性分析2018年1月至2023年2月湖北省妇幼保健院收治的237例附件肿瘤患者(单侧/双侧)(共277个肿瘤),其中恶性肿瘤138个,良性肿瘤139个,均在术前行超声检查并经术后病理证实。由2名高年资医师共同对所有肿瘤行IOTA简单法则、GI-RADS和O-RADS分类,另一名医师将分类结果与病理结果进行对照,通过受试者操作特征(ROC)曲线分别计算出IOTA简单法则、GI-RADS分类及O-RADS分类在附件肿瘤良恶性鉴别诊断中的敏感度、特异度、阳性预测值、阴性预测值及曲线下面积(AUC)。采用Delong检验比较3种诊断方法的诊断效能。

结果

IOTA简单法则在附件肿瘤良恶性鉴别诊断中的敏感度为99.3%,特异度为87.8%,AUC为0.935(95%可信区间:0.902~0.969),阳性预测值为88.96%,阴性预测值为99.19%;GI-RADS分类(取最佳截断值≥4类时)在附件肿瘤良恶性鉴别诊断中的敏感度为87.0%,特异度为90.6%,AUC为0.910(95%可信区间:0.877~0.943),阳性预测值为77.40%,阴性预测值为99.00%;O-RADS分类(取最佳截断值≥4类时)在附件肿瘤良恶性鉴别诊断中的敏感度为96.4%,特异度为90.6%,AUC为0.980(95%可信区间:0.967~0.994),阳性预测值为91.22%,阴性预测值为96.18%。IOTA简单法则与GI-RADS分类之间AUC比较,差异无统计学意义(P>0.05),O-RADS分类与IOTA简单法则、GI-RADS分类之间AUC比较,差异具有统计学意义(Z=5.09、3.06,P=0.003、0.002)。

结论

在附件肿瘤良恶性鉴别诊断中,O-RADS分类(当取最佳截断值≥4类时)的诊断效能最高,IOTA简单法则与GI-RADS分类(当取最佳截断值≥4类时)诊断效能相当,均较O-RADS分类低。

Objective

To assess the value of the International Ovarian Tumor Analysis (IOTA) simple rules, gynecology imaging reporting and data system (GI-RADS), and ovarian-adnexal reporting and data system (O-RADS) in the differential diagnosis of benign and malignant adnexal lesions.

Methods

A retrospective analysis was performed on 237 patients with adnexal tumors (unilateral/bilateral) admitted to Women and Childrens Hospital of Hubei Province from January 2018 to February 2023 (277 tumors in total), including 138 malignant tumors and 139 benign tumors, all of which were confirmed by preoperative ultrasound examination and postoperative pathology. Two senior physicians jointly performed classifications based on the IOTA simple rules, GI-RADS, and O-RADS, while another physician compared the classifications with the pathological results. The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) of the IOTA simple rules, GI-RADS, and O-RADS in the differential diagnosis of adnexal tumors were then calculated. The Delong test in R was used to compare the diagnostic performance of the three diagnostic methods.

Results

The sensitivity, specificity, AUC, positive predictive value, and negative predictive value of the IOTA simple rules in the differential diagnosis of adnexal tumors were 0.993, 0.878, 0.935 (95% confidence interval [CI]: 0.902-0.969), 88.96%, and 99.19%, respectively; the corresponding values for GI-RADS classification (when the optimal cut-off value was ≥level 4) and O-RADS classification (when the optimal cut-off value was ≥level 4) were 0.870, 0.906, 0.910 (95%CI: 0.877-0.943), 77.40%, and 99.00%, and 0.964, 0.906, 0.980 (95%CI: 0.967-0.994), 91.22%, and 96.18%. The AUC between the IOTA simple rules and GI-RADS classification showed no statistically significant difference (P>0.05), while the AUC between O-RADS classification and the IOTA simple rules and GI-RADS classification differed significantly (P=0.003 and P=0.002, respectively).

Conclusion

In the differential diagnosis of adnexal tumors, the O-RADS classification (when the optimal cut-off value was ≥ level 4) has the highest diagnostic efficacy. The diagnostic performance of the IOTA simple rules is comparable to that of the GI-RADS classification (when the optimal cut-off value is ≥ level 4), and both have a lower diagnostic performance than the O-RADS classification.

图1 48岁女性患者,附件区囊实性包块超声图像。图a:肿瘤最大径为71.0 mm;图b:彩色多普勒超声可见丰富的血流信号;图c:频谱多普勒示阻力指数为0.51。IOTA简单法则判断包块为恶性;GI-RADS分类为4类;O-RADS分类为5类。病理结果为卵巢成人型颗粒细胞瘤
图2 30岁女性患者,附件区囊实性包块超声图像。图a:超声示肿瘤最大径为83.8 mm;图b:彩色多普勒成像(CDFI)可见丰富的血流信号;图c:包块内可见多个乳头状实性结构,CDFI可见丰富血流信号;图d:频谱多普勒测得阻力指数为0.36。IOTA简单法则判断包块为恶性;GI-RADS分类为4类;O-RADS分类为5类。病理结果为卵巢交界性黏液性乳头状囊腺瘤
图3 61岁女性患者,附件区囊性包块超声图像。图a:二维超声示肿瘤最大径为42.4 mm;图b:彩色多普勒成像显示周边及分隔上可见少许血流信号;图c:频谱多普勒测得阻力指数为0.52。IOTA简单法则判断包块为良性;GI-RADS分类为4类;O-RADS分类为3类。病理结果为卵巢黏液性囊腺瘤
表1 附件区肿瘤病理结果
图4 国际卵巢肿瘤分析(IOTA)简单法则、妇科影像报告与数据系统(GI-RADS)、卵巢-附件影像报告和数据系统(O-RADS)三者诊断附件肿瘤良恶性的受试者操作特征曲线
表2 IOTA简单法则、GI-RADS分类、O-RADS分类在附件肿瘤中的鉴别诊断效能
1
Timmerman D, Planchamp F, Bourne T, et al. ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors[J]. Int J Gynecol Cancer, 2021, 31(7): 961-982.
2
Torre LA, Trabert B, Desantis CE, et al. Ovarian cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(4): 284-296.
3
Ledermann JA, Raja FA, Fotopoulou C, et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2018, 29(Suppl4): iv259.
4
Pavlik EJ, Depriest PD, Gallion HH, et al. Ovarian volume related to age[J]. Gynecologic Oncology, 2000, 77(3): 410-412.
5
Rosen DG, Wang L, Atkinson JN, et al. Potential markers that complement expression of CA125 in epithelial ovarian cancer[J]. Gynecol Oncol, 2005, 99(2): 267-277.
6
Timmerman D, Valentin L, Bourne TH, et al. Terms, definitions and measurements to describe the ultrasonographic features of adnexal tumors:a consensus opinion from the international ovarian tumor analysis(IOTA) group[J]. Ultrasound Obstet Gynecol, 2000, 16(5): 500-505.
7
Amor F, Alcázar JL, Vaccaro H, et al. GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice :a prospective multicenter study[J]. Ultrasound Pbstet Gynecol, 2011, 38(4): 450-455.
8
Andreotti RF, Timmerman D, Strachowski LM. O-RADS US risk stratification and management system:a consensus guideline from the ACR ovarian-adnexal reporting and data system committee[J]. Radiology, 2020, 294(1): 168-185.
9
Andreotti RF, Timmermsn D, Benacerraf BR, et al. Ovarian-adnexal reporting lexicon for ultrasound: a white paper of the ACR ovarian adnexal reporting and data system committee[J]. J Am Coll Radiol, 2018, 15(10): 1415-1429.
10
Alcázar JL, Rodriguez D. Three-dimensional power Doppler vascular sonographic sampling for predicting ovarian cancer in cystic-solid and solid vascularized masses[J]. J Ultrasound Med, 2009, 28(3): 275-281.
11
Berek JS, Kehoe ST, Kumar L, et al. Cancer of the ovary.fallopian tube,and peritoneum[J]. Int J Gynecol Obstet, 2018, 143(Suppl2): 59-78.
12
Giampaolino P, Della Cortel L, Foreste V, et al. Unraveling a difficult diagnosis:the tricks for early recognition of ovarian cancer[J]. Minerva Med, 2019, 110(4): 279-291.
13
Wang YC,Tian JY, Han YY, et al. Evaluation of the potential of ultrasound-mediated drug delivery for the treatment of ovarian canaer through preclinical studies[J]. Front Oncol, 2022, 5(12): 978603.
14
赵斌, 南媛, 郝妮娜, 等. 1999—2018年间女性恶性肿瘤住院患者病例资料回顾性研究[J]. 中国生育健康杂志, 2020, 31(4): 353-357.
15
Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review[J]. Semin Oncol Nurs, 2019, 35(2): 151-156.
16
Hiett AK, Sonek JD, Guy M, et al. Performance of IOTA Simple Rules risk assessment ADNEX model and O-RADS in differenting between benign and malignant adnexal lesions in North American women[J]. Ultrasound Obstet Gynecol, 2022, 59(5): 668-676.
17
许彩, 周苑, 赵胜, 崔新伍. 卵巢-附件报告与数据系统在超声诊断卵巢-附件肿块良恶性中的价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(1): 51-56.
[1] 张焱, 刘春媚, 姚瑾, 陈苗苗, 徐雯, 黄品同. 超声O-RADS分类和临床特征对不同病理类型卵巢浆液性肿瘤的诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 268-274.
[2] 栗嘉楠, 李秋洋, 徐虹, 谌梅, 汪龙霞. 鉴别附件肿块良恶性的超声模型诊断效能分析[J]. 中华医学超声杂志(电子版), 2022, 19(11): 1180-1186.
[3] 李欢, 李晓琴, 吴秀花, 施燕芸. ADNEX模型联合哥本哈根指数对卵巢肿瘤良恶性的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(12): 1213-1219.
[4] 马士红, 李晓琴, 施燕芸. 四种恶性风险指数对卵巢肿瘤良恶性鉴别的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(11): 1108-1113.
[5] 何欣林, 阎昊铮, 赵亦非, 江彩霞, 李征宇. 新辅助化疗联合间歇性肿瘤细胞减灭术对上皮性卵巢癌患者预后及血清学与影像学指标对患者预后的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 47-57.
[6] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[7] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[8] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[9] 邓洁, 王一然, 王平. 卵巢透明细胞癌患者并发静脉血栓栓塞症的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 150-157.
[10] 初磊, 郭翼, 童晓文. Periostin在妇科恶性肿瘤中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 145-149.
[11] 宫晗, 聂丹, 黄玥, 李征宇. 聚腺苷酸二磷酸核糖聚合酶抑制剂在复发性卵巢癌维持治疗中的作用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(01): 1-6.
[12] 刘庭秀, 刘新敏, 刘莹, 隋娟, 武宇, 赵瑜敬, 毕红, 孙雪梅, 范秀华. 腹壁整形术后腹腔镜新脐入路治疗卵巢肿物的安全性探讨[J]. 中华腔镜外科杂志(电子版), 2024, 17(03): 189-192.
[13] 张允耀, 王静, 范爱娟, 牟海萍. 超声诊断卵巢交界性肿瘤临床价值的荟萃分析[J]. 中华诊断学电子杂志, 2024, 12(02): 85-89.
[14] 刘育昕, 王子晗, 张艺馨, 栾永婕, 孟凯. 肾母细胞瘤基因1在卵巢疾病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 178-183.
[15] 王可珺, 李吉镇, 马标, 续慧超, 谌红珊, 刘雷. 肌酐/胱抑素C对晚期上皮性卵巢癌术后并发症的预测价值[J]. 中华诊断学电子杂志, 2023, 11(01): 49-55.
阅读次数
全文


摘要