切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (02) : 128 -134. doi: 10.3877/cma.j.issn.1672-6448.2021.02.002

所属专题: 文献

心血管超声影像学

心肌弹性成像对高血压左心室不同构型患者心肌僵硬度的评价
魏丽群1, 李一丹1, 丁雪晏1, 朱维维1, 王娟2, 王江涛3, 吕秀章,1   
  1. 1. 100020 首都医科大学附属北京朝阳医院心脏超声科
    2. 100020 首都医科大学附属北京朝阳医院心内科
    3. 100020 北京通用电气医疗心血管超声临床科研部
  • 收稿日期:2020-05-31 出版日期:2021-02-01
  • 通信作者: 吕秀章
  • 基金资助:
    国家自然科学基金青年项目(81900382); 扬帆计划临床技术创新项目(XMLX201827)

Evaluation of myocardial stiffness by intrinsic cardiac elastography in hypertensivepatients with different types of left ventricular remodeling

Liqun Wei1, Yidan Li1, Xueyan Ding1, Weiwei Zhu1, juan Wang2, Jiangtao Wang3, Xiuzhang Lyu,1   

  1. 1. Department of Echocardiography, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
    2. Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
    3. GE Medical Cardiovascular Ultrasound Clinical Research Department, Beijing 100020, China
  • Received:2020-05-31 Published:2021-02-01
  • Corresponding author: Xiuzhang Lyu
引用本文:

魏丽群, 李一丹, 丁雪晏, 朱维维, 王娟, 王江涛, 吕秀章. 心肌弹性成像对高血压左心室不同构型患者心肌僵硬度的评价[J/OL]. 中华医学超声杂志(电子版), 2021, 18(02): 128-134.

Liqun Wei, Yidan Li, Xueyan Ding, Weiwei Zhu, juan Wang, Jiangtao Wang, Xiuzhang Lyu. Evaluation of myocardial stiffness by intrinsic cardiac elastography in hypertensivepatients with different types of left ventricular remodeling[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(02): 128-134.

目的

探讨高频组织多普勒超声心动图弹性成像技术测量舒张末期左心室心肌拉伸的固有波传播速度(IVP),评价高血压左心室不同构型患者心肌僵硬度的可行性和临床价值。

方法

前瞻性纳入2019年9月至2020年3月在北京朝阳医院治疗的90例高血压患者(左心室正常构型组22例、向心性重构组30例及向心性肥厚组38例)和同期门诊年龄、性别匹配的30例健康者为对照组,均接受包括斑点追踪测量左心室整体纵向应变(GLS)的全面超声心动图检查,采用弹性成像技术定量检测心肌弹性的直接测量指标——心肌拉伸的IVP。比较各组之间IVP是否存在差异,IVP与常用超声心动图参数和GLS的相关性,受试者工作特征(ROC)曲线分析IVP预测左心室向心性肥厚的敏感度和特异度。

结果

高血压患者IVP高于健康对照组,向心性肥厚组IVP显著高于健康对照组、左心室重构组及正常构型组(均P<0.05)。IVP与左心室后壁厚度(LVPWT)、左心室质量指数(LVMI)、室间隔厚度(IVS)、相对室壁厚度(RWT)、收缩压(SBP)及E/e'呈显著正相关(r=0.732、0.695、0.670、0.652、0.626、0.625,均P<0.01),与GLS、e' average呈负相关(r=-0.593、-0.445,均P<0.001)。ROC曲线分析显示,IVP>179.84 cm/s是预测高血压患者左心室向心性肥厚构型的最佳阈值(敏感度92%,特异度61%)。

结论

IVP是无创定量评估高血压左心室重构患者左心室心肌僵硬度的新参数,值得进一步研究应用。

Objective

To explore the feasibility and clinical value of end-diastolic left ventricular intrinsic velocity propagation (IVP) of myocardial stretch measured by high-frame rate tissue Doppler echocardiography forevaluating myocardial stiffness in hypertensive patients with different types of left ventricular remodeling.

Methods

A total of 90 hypertensive patients with different types of left ventricular remodeling (22 patients with normal geometry, 30 with concentric remodeling, and 38 with concentric hypertrophy) and 30 healthy controls were prospectively included in this study. All subjects underwent comprehensive echocardiographic examination including speckle tracking and measurement of global longitudinal strain (GLS) of the left ventricle, and IVP of myocardial stretch,which is a direct and quantitative measurement index of myocardial elasticity. The differences of IVP among the groups were compared.The correlations between IVP and common echocardiographic parameters or GLS were analyzed. The sensitivity and specificity of IVP in predicting left ventricular concentric hypertrophy were analyzed by receiver operating characteristic (ROC) curve analysis.

Results

IVP in hypertensive patients was higher than that of healthy controls, and IVP in the concentric hypertrophy subgroup was significantly higher than that of the other two left ventricular remodeling subgroups(P<0.05). IVP was significantly positively correlated with left ventricular posterior wall thickness, left ventricular mass index, thickness of interventricular septum, relative wall thickness, systolic blood pressure, and E/e'(r=0.732, 0.695, 0.670, 0.652, 0.626, and 0.625, respectively; P<0.001 for all), and negatively correlated with GLS and e'average (r=-0.593 and -0.445, respectively). ROC curve analysis showed that IVP>179.84 cm/s was the best threshold for predicting left ventricular concentric hypertrophy in hypertensive patients (sensitivity 92%, specificity 61%). Condusion IVP is a new parameter for noninvasive and quantitative evaluation of left ventricular myocardial stiffness in hypertensive patients with left ventricular remodeling, which is worthy of further study and application.

图1 健康者与高血压患者左心室舒张末期心肌拉伸的固有波传播速度(IVP)测量,IVP为舒张末期开始时等速波阵从基底部向心尖部传播的速度(红色箭头直线的斜率)。图a示健康者IVP为133 cm/s;图b示高血压患者IVP为323 cm/s
表1 高血压各组与对照组一般临床资料比较(
xˉ
±s)
表2 高血压各组与对照组超声心动图参数比较(
xˉ
±s)
图2 舒张末期心肌拉伸的固有波速度(IVP)预测左心室舒张功能减低的受试者工作特征(ROC)曲线
图3 舒张末期心肌拉伸的固有波速度(IVP)预测左心室向心性肥厚构型的受试者工作特征(ROC)曲线
1
Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin[J]. Circulation, 2015, 131(14):1247-1259.
2
Pislaru C, Alashry MM, Thaden JJ, et al. Intrinsic wave propagation of myocardial stretch, a new tool to evaluate myocardial stiffness: a pilot study in patients with aortic stenosis and mitral pegurgitation[J]. J Am Soc Echocardiogr, 2017, 30(11):1070-1080.
3
Pislaru C, Ionescu F, Alashry M, et al. Myocardial stiffness by intrinsic cardiac elastography in patients with amyloidosis: comparison with chamber stiffness and global longitudinal strain[J]. J Am Soc Echocardiogr, 2019, 32(8):958-968.e4.
4
Anupraiwan O, Pislaru SV, Pellikka PA, et al. Noninvasive quantification of myocardial elasticity in patients with hypertrophic cardiomyopathy[J]. Circulation, 2018, 138(suppl_1):A16921.
5
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension[J]. Kardiol Pol, 2019, 77(2):71-159.
6
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2016, 29(4):277-314.
7
Klotz S, Hay I, Dickstein ML, et al. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application[J]. Am J Physiol Heart Circ Physiol, 2006, 291(1):H403-H412.
8
Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers[J]. Am J Physiol Heart Circ Physiol, 2005, 289(2):H501-H512.
9
Vejdani-Jahromi M, Freedman J, Nagle M, et al. Quantifying myocardial contractility changes using ultrasound-based shear wave elastography[J]. J Am Soc Echocardiogr, 2017, 30(1):90-96.
10
Kakkad V, LeFevre M, Hollender P, et al. Non-invasive measurement of dynamic myocardial stiffness using acoustic radiation force impulse imaging[J]. Ultrasound Med Biol, 2019, 45(5):1112-1130.
11
Cvijic M, Bézy S, Petrescu A, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(6):664-672.
12
Yamamoto K, Masuyama T, Sakata Y, et al. Local neurohumoral regulation in the transition to isolated diastolic heart failure in hypertensive heart disease: absence of AT1 receptor downregulation and 'overdrive' of the endothelin system[J]. Cardiovasc Res, 2000, 46(3):421-432.
13
Villemain O, Correia M, Mousseaux E, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1):1135-1145.
14
Strachinaru M, Geleijnse ML, de Jong N, et al. Myocardial stretch post-atrial contraction in healthy volunteers and hypertrophic cardiomyopathy patients[J]. Ultrasound Med Biol, 2019, 45(8):1987-1998.
15
Petrescu A, Santos P, Orlowska M, et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2019, 12(12):2389-2398.
16
Yamamoto K, Masuyama T, Sakata Y, et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart[J]. Cardiovasc Res, 2002, 55(1):76-82.
17
Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis[J]. Circulation, 2000, 102(4):470-479.
18
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2):172-180.
19
Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy[J]. Curr Hypertens Rep, 2020, 22(2):11.
20
Arani A, Arunachalam SP, Chang I, et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis[J]. J Magn Reson Imaging, 2017, 46(5):1361-1367.
21
Liu D, Hu K, Störk S, et al. Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction[J]. PLoS One, 2014, 9(12):e115910.
22
Pagourelias ED, Mirea O, Duchenne J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters[J]. Circ Cardiovasc Imaging, 2017, 10(3):e005588.
23
Pernot M, Lee WN, Bel A, et al. Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium[J]. JACC Cardiovasc Imaging, 2016, 9(9):1023-1030.
24
Pislaru C, Pellikka PA, Pislaru SV. Wave propagation of myocardial stretch: correlation with myocardial stiffness[J]. Basic Res Cardiol, 2014, 109(6):438.
25
Alashry M, Luis SA, Tunhasiriwet A, et al. Left ventricular myocardial stiffness by intrinsic wave propagation method increases with severity of diastolic dysfunction[J]. J Am Soc Echocardiogr, 2016, 29: B128-B129.
26
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2016, 29(4): 277-314.
27
Yesildag O, Koprulu D, Yuksel S, et al. Noninvasive assessment of left ventricular end-diastolic pressure with tissue Doppler imaging in patients with mitral regurgitation[J]. Echocardiography, 2011, 28(6): 633-640.
[1] 杜祖升, 赵博文, 张帧, 潘美, 彭晓慧, 陈冉, 毛彦恺. 应用二维斑点追踪成像技术评估孕周及心尖方向对中晚孕期正常胎儿左心房应变的影响[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 843-851.
[2] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[3] 张商迪, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳, 袁华, 陈燕. 中晚孕期胎儿心房内径定量评估心房比例失调胎儿心脏畸形的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 785-793.
[4] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[5] 王水清, 赵博文, 潘美, 彭晓慧, 陈冉, 马明明, 狄敏. 16~40周正常胎儿左心房后间隙指数及其Z评分的定量研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 460-469.
[6] 唐小清, 何萍, 杨友, 罗霞, 张菊英, 杨鑫, 余进洪. 声触诊弹性成像联合脉冲多普勒超声成像参数与早期慢性肾脏病分期的相关性及临床价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 491-499.
[7] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[8] 徐艳, 江秀娟, 王超, 江圆满. 股直肌剪切波弹性成像对COPD并发肌少症的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 454-457.
[9] 刘起帆, 蒋安. 肝硬化门静脉高压症门静脉压力无创测量进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 270-275.
[10] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[11] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[12] 刘国龙, 王鹏, 谭超, 杨辉, 彭菊红. 神经外科机器人辅助双通道颅内血肿清除术治疗高血压性脑出血[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 254-256.
[13] 景方坤, 周建波, 王全才, 黄海韬, 李岩峰, 徐杨熙. 神经导航引导下治疗基底节高血压脑出血的短期疗效预测[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 154-159.
[14] 赵欣, 李昊昌, 卫星彤. 多模态超声在非肿块型乳腺病变中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 407-410.
[15] 卫星彤, 李昊昌, 赵欣. 甲状腺木乃伊结节于多模态超声下的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 415-419.
阅读次数
全文
9
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 5 0 0 4

  来源 本网站 其他网站
  次数 9 0
  比例 100% 0%

摘要
375
最新录用 在线预览 正式出版
0 0 375
  来源 本网站 其他网站
  次数 197 178
  比例 53% 47%