切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (02) : 128 -134. doi: 10.3877/cma.j.issn.1672-6448.2021.02.002

所属专题: 文献

心血管超声影像学

心肌弹性成像对高血压左心室不同构型患者心肌僵硬度的评价
魏丽群1, 李一丹1, 丁雪晏1, 朱维维1, 王娟2, 王江涛3, 吕秀章1,()   
  1. 1. 100020 首都医科大学附属北京朝阳医院心脏超声科
    2. 100020 首都医科大学附属北京朝阳医院心内科
    3. 100020 北京通用电气医疗心血管超声临床科研部
  • 收稿日期:2020-05-31 出版日期:2021-02-01
  • 通信作者: 吕秀章
  • 基金资助:
    国家自然科学基金青年项目(81900382); 扬帆计划临床技术创新项目(XMLX201827)

Evaluation of myocardial stiffness by intrinsic cardiac elastography in hypertensivepatients with different types of left ventricular remodeling

Liqun Wei1, Yidan Li1, Xueyan Ding1, Weiwei Zhu1, juan Wang2, Jiangtao Wang3, Xiuzhang Lyu1,()   

  1. 1. Department of Echocardiography, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
    2. Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
    3. GE Medical Cardiovascular Ultrasound Clinical Research Department, Beijing 100020, China
  • Received:2020-05-31 Published:2021-02-01
  • Corresponding author: Xiuzhang Lyu
引用本文:

魏丽群, 李一丹, 丁雪晏, 朱维维, 王娟, 王江涛, 吕秀章. 心肌弹性成像对高血压左心室不同构型患者心肌僵硬度的评价[J]. 中华医学超声杂志(电子版), 2021, 18(02): 128-134.

Liqun Wei, Yidan Li, Xueyan Ding, Weiwei Zhu, juan Wang, Jiangtao Wang, Xiuzhang Lyu. Evaluation of myocardial stiffness by intrinsic cardiac elastography in hypertensivepatients with different types of left ventricular remodeling[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(02): 128-134.

目的

探讨高频组织多普勒超声心动图弹性成像技术测量舒张末期左心室心肌拉伸的固有波传播速度(IVP),评价高血压左心室不同构型患者心肌僵硬度的可行性和临床价值。

方法

前瞻性纳入2019年9月至2020年3月在北京朝阳医院治疗的90例高血压患者(左心室正常构型组22例、向心性重构组30例及向心性肥厚组38例)和同期门诊年龄、性别匹配的30例健康者为对照组,均接受包括斑点追踪测量左心室整体纵向应变(GLS)的全面超声心动图检查,采用弹性成像技术定量检测心肌弹性的直接测量指标——心肌拉伸的IVP。比较各组之间IVP是否存在差异,IVP与常用超声心动图参数和GLS的相关性,受试者工作特征(ROC)曲线分析IVP预测左心室向心性肥厚的敏感度和特异度。

结果

高血压患者IVP高于健康对照组,向心性肥厚组IVP显著高于健康对照组、左心室重构组及正常构型组(均P<0.05)。IVP与左心室后壁厚度(LVPWT)、左心室质量指数(LVMI)、室间隔厚度(IVS)、相对室壁厚度(RWT)、收缩压(SBP)及E/e'呈显著正相关(r=0.732、0.695、0.670、0.652、0.626、0.625,均P<0.01),与GLS、e' average呈负相关(r=-0.593、-0.445,均P<0.001)。ROC曲线分析显示,IVP>179.84 cm/s是预测高血压患者左心室向心性肥厚构型的最佳阈值(敏感度92%,特异度61%)。

结论

IVP是无创定量评估高血压左心室重构患者左心室心肌僵硬度的新参数,值得进一步研究应用。

Objective

To explore the feasibility and clinical value of end-diastolic left ventricular intrinsic velocity propagation (IVP) of myocardial stretch measured by high-frame rate tissue Doppler echocardiography forevaluating myocardial stiffness in hypertensive patients with different types of left ventricular remodeling.

Methods

A total of 90 hypertensive patients with different types of left ventricular remodeling (22 patients with normal geometry, 30 with concentric remodeling, and 38 with concentric hypertrophy) and 30 healthy controls were prospectively included in this study. All subjects underwent comprehensive echocardiographic examination including speckle tracking and measurement of global longitudinal strain (GLS) of the left ventricle, and IVP of myocardial stretch,which is a direct and quantitative measurement index of myocardial elasticity. The differences of IVP among the groups were compared.The correlations between IVP and common echocardiographic parameters or GLS were analyzed. The sensitivity and specificity of IVP in predicting left ventricular concentric hypertrophy were analyzed by receiver operating characteristic (ROC) curve analysis.

Results

IVP in hypertensive patients was higher than that of healthy controls, and IVP in the concentric hypertrophy subgroup was significantly higher than that of the other two left ventricular remodeling subgroups(P<0.05). IVP was significantly positively correlated with left ventricular posterior wall thickness, left ventricular mass index, thickness of interventricular septum, relative wall thickness, systolic blood pressure, and E/e'(r=0.732, 0.695, 0.670, 0.652, 0.626, and 0.625, respectively; P<0.001 for all), and negatively correlated with GLS and e'average (r=-0.593 and -0.445, respectively). ROC curve analysis showed that IVP>179.84 cm/s was the best threshold for predicting left ventricular concentric hypertrophy in hypertensive patients (sensitivity 92%, specificity 61%). Condusion IVP is a new parameter for noninvasive and quantitative evaluation of left ventricular myocardial stiffness in hypertensive patients with left ventricular remodeling, which is worthy of further study and application.

图1 健康者与高血压患者左心室舒张末期心肌拉伸的固有波传播速度(IVP)测量,IVP为舒张末期开始时等速波阵从基底部向心尖部传播的速度(红色箭头直线的斜率)。图a示健康者IVP为133 cm/s;图b示高血压患者IVP为323 cm/s
表1 高血压各组与对照组一般临床资料比较(
xˉ
±s)
表2 高血压各组与对照组超声心动图参数比较(
xˉ
±s)
图2 舒张末期心肌拉伸的固有波速度(IVP)预测左心室舒张功能减低的受试者工作特征(ROC)曲线
图3 舒张末期心肌拉伸的固有波速度(IVP)预测左心室向心性肥厚构型的受试者工作特征(ROC)曲线
1
Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin[J]. Circulation, 2015, 131(14):1247-1259.
2
Pislaru C, Alashry MM, Thaden JJ, et al. Intrinsic wave propagation of myocardial stretch, a new tool to evaluate myocardial stiffness: a pilot study in patients with aortic stenosis and mitral pegurgitation[J]. J Am Soc Echocardiogr, 2017, 30(11):1070-1080.
3
Pislaru C, Ionescu F, Alashry M, et al. Myocardial stiffness by intrinsic cardiac elastography in patients with amyloidosis: comparison with chamber stiffness and global longitudinal strain[J]. J Am Soc Echocardiogr, 2019, 32(8):958-968.e4.
4
Anupraiwan O, Pislaru SV, Pellikka PA, et al. Noninvasive quantification of myocardial elasticity in patients with hypertrophic cardiomyopathy[J]. Circulation, 2018, 138(suppl_1):A16921.
5
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension[J]. Kardiol Pol, 2019, 77(2):71-159.
6
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2016, 29(4):277-314.
7
Klotz S, Hay I, Dickstein ML, et al. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application[J]. Am J Physiol Heart Circ Physiol, 2006, 291(1):H403-H412.
8
Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers[J]. Am J Physiol Heart Circ Physiol, 2005, 289(2):H501-H512.
9
Vejdani-Jahromi M, Freedman J, Nagle M, et al. Quantifying myocardial contractility changes using ultrasound-based shear wave elastography[J]. J Am Soc Echocardiogr, 2017, 30(1):90-96.
10
Kakkad V, LeFevre M, Hollender P, et al. Non-invasive measurement of dynamic myocardial stiffness using acoustic radiation force impulse imaging[J]. Ultrasound Med Biol, 2019, 45(5):1112-1130.
11
Cvijic M, Bézy S, Petrescu A, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(6):664-672.
12
Yamamoto K, Masuyama T, Sakata Y, et al. Local neurohumoral regulation in the transition to isolated diastolic heart failure in hypertensive heart disease: absence of AT1 receptor downregulation and 'overdrive' of the endothelin system[J]. Cardiovasc Res, 2000, 46(3):421-432.
13
Villemain O, Correia M, Mousseaux E, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1):1135-1145.
14
Strachinaru M, Geleijnse ML, de Jong N, et al. Myocardial stretch post-atrial contraction in healthy volunteers and hypertrophic cardiomyopathy patients[J]. Ultrasound Med Biol, 2019, 45(8):1987-1998.
15
Petrescu A, Santos P, Orlowska M, et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2019, 12(12):2389-2398.
16
Yamamoto K, Masuyama T, Sakata Y, et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart[J]. Cardiovasc Res, 2002, 55(1):76-82.
17
Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis[J]. Circulation, 2000, 102(4):470-479.
18
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2):172-180.
19
Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy[J]. Curr Hypertens Rep, 2020, 22(2):11.
20
Arani A, Arunachalam SP, Chang I, et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis[J]. J Magn Reson Imaging, 2017, 46(5):1361-1367.
21
Liu D, Hu K, Störk S, et al. Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction[J]. PLoS One, 2014, 9(12):e115910.
22
Pagourelias ED, Mirea O, Duchenne J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters[J]. Circ Cardiovasc Imaging, 2017, 10(3):e005588.
23
Pernot M, Lee WN, Bel A, et al. Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium[J]. JACC Cardiovasc Imaging, 2016, 9(9):1023-1030.
24
Pislaru C, Pellikka PA, Pislaru SV. Wave propagation of myocardial stretch: correlation with myocardial stiffness[J]. Basic Res Cardiol, 2014, 109(6):438.
25
Alashry M, Luis SA, Tunhasiriwet A, et al. Left ventricular myocardial stiffness by intrinsic wave propagation method increases with severity of diastolic dysfunction[J]. J Am Soc Echocardiogr, 2016, 29: B128-B129.
26
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2016, 29(4): 277-314.
27
Yesildag O, Koprulu D, Yuksel S, et al. Noninvasive assessment of left ventricular end-diastolic pressure with tissue Doppler imaging in patients with mitral regurgitation[J]. Echocardiography, 2011, 28(6): 633-640.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[4] 孙佳英, 黄云洲, 任书堂, 王翠华, 陈新华, 于艾嘉, 陈元禄. 无创心肌做功对左束支传导阻滞患者左心室整体及节段心肌收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(08): 836-843.
[5] 钟露, 曹省, 宋宏宁, 陈金玲, 周青. 超声心动图定量评估二尖瓣反流程度的质量控制[J]. 中华医学超声杂志(电子版), 2023, 20(07): 705-711.
[6] 金姗, 丁雪晏, 蔡绮哲, 李一丹, 赵智玲, 郭兮恒, 吕秀章. 左心室压力-应变环对阻塞型睡眠呼吸暂停综合征患者心肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 575-580.
[7] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[8] 郭云云, 解翔, 彭梅, 姜凡, 毕玉, 何年安, 胡蕾, 杨杨, 王涛, 石玉洁, 陈冬冬. ACR-TIRADS与C-TIRADS分类分别联合二维剪切波弹性成像对甲状腺结节分类的诊断效能——多中心回顾性研究[J]. 中华医学超声杂志(电子版), 2023, 20(05): 511-516.
[9] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[10] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[11] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[12] 杨天池, 韩威, 邱枫, 祁佳慧. 术中胰腺超声弹性成像在胰腺质地评估中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 646-650.
[13] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[14] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[15] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
阅读次数
全文


摘要