1 |
Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin[J]. Circulation, 2015, 131(14):1247-1259.
|
2 |
Pislaru C, Alashry MM, Thaden JJ, et al. Intrinsic wave propagation of myocardial stretch, a new tool to evaluate myocardial stiffness: a pilot study in patients with aortic stenosis and mitral pegurgitation[J]. J Am Soc Echocardiogr, 2017, 30(11):1070-1080.
|
3 |
Pislaru C, Ionescu F, Alashry M, et al. Myocardial stiffness by intrinsic cardiac elastography in patients with amyloidosis: comparison with chamber stiffness and global longitudinal strain[J]. J Am Soc Echocardiogr, 2019, 32(8):958-968.e4.
|
4 |
Anupraiwan O, Pislaru SV, Pellikka PA, et al. Noninvasive quantification of myocardial elasticity in patients with hypertrophic cardiomyopathy[J]. Circulation, 2018, 138(suppl_1):A16921.
|
5 |
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension[J]. Kardiol Pol, 2019, 77(2):71-159.
|
6 |
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2016, 29(4):277-314.
|
7 |
Klotz S, Hay I, Dickstein ML, et al. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application[J]. Am J Physiol Heart Circ Physiol, 2006, 291(1):H403-H412.
|
8 |
Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers[J]. Am J Physiol Heart Circ Physiol, 2005, 289(2):H501-H512.
|
9 |
Vejdani-Jahromi M, Freedman J, Nagle M, et al. Quantifying myocardial contractility changes using ultrasound-based shear wave elastography[J]. J Am Soc Echocardiogr, 2017, 30(1):90-96.
|
10 |
Kakkad V, LeFevre M, Hollender P, et al. Non-invasive measurement of dynamic myocardial stiffness using acoustic radiation force impulse imaging[J]. Ultrasound Med Biol, 2019, 45(5):1112-1130.
|
11 |
Cvijic M, Bézy S, Petrescu A, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(6):664-672.
|
12 |
Yamamoto K, Masuyama T, Sakata Y, et al. Local neurohumoral regulation in the transition to isolated diastolic heart failure in hypertensive heart disease: absence of AT1 receptor downregulation and 'overdrive' of the endothelin system[J]. Cardiovasc Res, 2000, 46(3):421-432.
|
13 |
Villemain O, Correia M, Mousseaux E, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1):1135-1145.
|
14 |
Strachinaru M, Geleijnse ML, de Jong N, et al. Myocardial stretch post-atrial contraction in healthy volunteers and hypertrophic cardiomyopathy patients[J]. Ultrasound Med Biol, 2019, 45(8):1987-1998.
|
15 |
Petrescu A, Santos P, Orlowska M, et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2019, 12(12):2389-2398.
|
16 |
Yamamoto K, Masuyama T, Sakata Y, et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart[J]. Cardiovasc Res, 2002, 55(1):76-82.
|
17 |
Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis[J]. Circulation, 2000, 102(4):470-479.
|
18 |
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2):172-180.
|
19 |
Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy[J]. Curr Hypertens Rep, 2020, 22(2):11.
|
20 |
Arani A, Arunachalam SP, Chang I, et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis[J]. J Magn Reson Imaging, 2017, 46(5):1361-1367.
|
21 |
Liu D, Hu K, Störk S, et al. Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction[J]. PLoS One, 2014, 9(12):e115910.
|
22 |
Pagourelias ED, Mirea O, Duchenne J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters[J]. Circ Cardiovasc Imaging, 2017, 10(3):e005588.
|
23 |
Pernot M, Lee WN, Bel A, et al. Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium[J]. JACC Cardiovasc Imaging, 2016, 9(9):1023-1030.
|
24 |
Pislaru C, Pellikka PA, Pislaru SV. Wave propagation of myocardial stretch: correlation with myocardial stiffness[J]. Basic Res Cardiol, 2014, 109(6):438.
|
25 |
Alashry M, Luis SA, Tunhasiriwet A, et al. Left ventricular myocardial stiffness by intrinsic wave propagation method increases with severity of diastolic dysfunction[J]. J Am Soc Echocardiogr, 2016, 29: B128-B129.
|
26 |
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2016, 29(4): 277-314.
|
27 |
Yesildag O, Koprulu D, Yuksel S, et al. Noninvasive assessment of left ventricular end-diastolic pressure with tissue Doppler imaging in patients with mitral regurgitation[J]. Echocardiography, 2011, 28(6): 633-640.
|