切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (09) : 983 -989. doi: 10.3877/cma.j.issn.1672-6448.2022.09.019

浅表器官超声影像学

人工智能自动检测系统对不同经验医师诊断乳腺小肿块的辅助作用
吕淑懿1, 张燕1,(), 章美武1, 范晓翔1, 高立博1, 李飞1   
  1. 1. 315010 浙江宁波,中国科学院大学宁波华美医院介入治疗科
  • 收稿日期:2022-02-02 出版日期:2022-09-01
  • 通信作者: 张燕
  • 基金资助:
    浙江省医药卫生科技计划项目(2020KY837)

Role of an automated artificial intelligence detection system in diagnosis of small breast masses by physicians with varying levels of experience

Shuyi Lyu1, Yan Zhang1,(), Meiwu Zhang1, Xiaoxiang Fan1, Libo Gao1, Fei Li1   

  1. 1. Interventional Therapy Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
  • Received:2022-02-02 Published:2022-09-01
  • Corresponding author: Yan Zhang
引用本文:

吕淑懿, 张燕, 章美武, 范晓翔, 高立博, 李飞. 人工智能自动检测系统对不同经验医师诊断乳腺小肿块的辅助作用[J]. 中华医学超声杂志(电子版), 2022, 19(09): 983-989.

Shuyi Lyu, Yan Zhang, Meiwu Zhang, Xiaoxiang Fan, Libo Gao, Fei Li. Role of an automated artificial intelligence detection system in diagnosis of small breast masses by physicians with varying levels of experience[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(09): 983-989.

目的

初步探讨人工智能自动检测系统对乳腺小肿块的诊断效能以及对不同经验医师的辅助作用。

方法

选取中国科学院大学宁波华美医院164个经病理证实的最大直径≤10 mm的乳腺小肿块,由4名不同经验的医师(医师A和医师B归为高年资医师组,医师C和医师D归为低年资医师组)先独立诊断,给出相应的乳腺影像报告与数据系统(BI-RADS)分类,结果设为A1组、B1组、C1组和D1组。4周后,4名医师再次联合应用人工智能自动检测系统诊断,结果设为A2组、B2组、C2组和D2组。人工智能自动检测系统诊断结果设为M组。以病理结果为金标准,计算不同组医师诊断的敏感度、特异度、准确性、阴性预测值和阳性预测值,绘制受试者操作特征曲线。采用Kappa检验比较不同组观察者间的一致性。

结果

病理结果显示,164个乳腺肿块中良性117个(71.34%),恶性47个(28.66%)。人工智能自动检测系统对乳腺小肿块有良好的诊断效能,敏感度、特异度、准确性分别为91.49%、90.6%、90.85%。联合应用人工智能自动检测系统后高年资医师的诊断效能有上升趋势,敏感度、特异度分别为A1组82.98%、82.05%;A2组87.23%、89.74%;B1组80.85%、84.62%;B2组85.11%、89.74%。低年资医师在人工智能自动检测系统的辅助下诊断效能明显提高,敏感度、特异度分别为C1组76.60%、74.36%;C2组82.98%、82.05%;D1组68.09%、73.50%;D2组80.85%、80.34%。此外低年资医师借助人工智能自动检测系统对乳腺小肿块BI-RADS分类的观察者间一致性明显提高,低年资医师间的Kappa值由0.236提高到0.549,低年资医师与高年资医师的Kappa值由0.268~0.284提高到0.432~0.540。

结论

人工智能自动检测系统对乳腺小肿块良恶性的判断具有较高的诊断效能,其对不同经验医师的辅助作用不同,对低年资医师的影响大于高年资医师。人工智能自动检测系统有助于提高低年资医师BI-RADS分类观察者间的一致性。

Objective

To preliminarily investigate the diagnostic efficacy of an automated artificial intelligence (AI) detection system for small breast masses, as well as its complementary role for physicians with varying levels of experience.

Methods

A total of 164 pathologically confirmed small breast masses with a diameter of up to 10 mm were chosen at Hwa Mei Hospital, University of Chinese Academy of Sciences, and four physicians (doctors A and B were senior physicians, and doctors C and D were junior ones) with varying levels of experience independently diagnosed the masses according to the Breast Imaging Reporting and Data System (BI-RADS) classification, and the results were reported as groups A1, B1, C1, and D1. Four weeks later, the four physicians again jointly applied the AI automatic detection system to diagnose the masses, and the results were reported as groups A2, B2, C2, and D2. The results of the AI automatic detection system were reported as group M. Taking pathological results as the gold standard, the sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of diagnosis by physicians in different groups were calculated, and the receiver operating characteristic curve was drawn. The Kappa test was used to calculate the interobserver agreement between groups.

Results

Pathological results showed that among the 164 breast masses, 117 (71.34%) were benign and 47 (28.66%) were malignant. The AI automatic detection system had good diagnostic efficacy for small breast lumps, with a sensitivity, specificity, and accuracy of 91.49%, 90.6%, and 90.85%. The diagnostic efficacy of senior physicians after the joint application of the AI automatic detection system tended to increase, with a sensitivity and specificity of 82.98% and 82.05% in group A1; 87.23% and 89.74% in group A2; 80.85% and 84.62% in group B1; and 85.11% and 89.74% in group B2. The diagnostic efficacy of senior physicians with the aid of the AI automatic detection system was significantly improved, with a sensitivity and specificity of 76.60% and 74.36 in group C1; 82.98% and 82.05% in group C2; 68.09% and 73.50% in group D1; and 80.85% and 80.34% in group D2. The interobserver agreement of BI-RADS classification of small breast masses by low senior physicians with the help of the AI automatic detection system was significantly higher. The Kappa value among junior physicians increased from 0.236 to 0.549. The Kappa value among junior and senior physicians increased from 0.268-0.284 to 0.432-0.540.

Conclusion

The AI automated detection system has high diagnostic efficacy in determining the benignity and malignancy of small breast masses, and its adjunctive effect varies among experienced physicians, with a greater impact on junior physicians than on senior physicians. The AI automated detection system helps to improve the interobserver agreement of BI-RADS classification among junior physicians.

图1 人工智能自动检测系统(AI-SONIC Breast)良性肿块诊断流程图。图a示AI-SONIC Breast自动识别乳腺肿块,并对方向、边缘、结构、回声类型和强回声5个特征自动分析;图b示AI-SONIC Breast自动进行良恶性判断,肿块良恶性概率值为0.23,偏良性;图c该肿块病理提示为乳腺腺病
图2 人工智能自动检测系统(AI-SONIC Breast)恶性肿块诊断流程图。图a示AI-SONIC Breast自动识别乳腺肿块,并对方向、边缘、结构、回声类型和强回声5个特征自动分析;图b示AI-SONIC Breast自动进行良恶性判断,肿块良恶性概率值为0.69,偏恶性;图c该肿块病理提示为乳腺浸润性导管癌
表1 164个乳腺小肿块的病理结果[个(%)]
表2 4名医师BI-RADS分类结果的一致性分析结果
表3 AI-SONIC Breast与不同年资医师的诊断一致性分析结果
表4 不同组医师对乳腺小肿块诊断效能比较
图3 不同诊断方式组诊断乳腺小肿块的受试者操作特征曲线注:A1、B1、C1、D1代表4名医师独立进行人工乳腺肿块分类,A2、B2、C2、D2代表4名医师应用人工智能自动检测系统(AI-SONIC Breast)辅助进行乳腺肿块分类,M组为AI-SONIC Breast分类结果
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
Natarajan B, Spiegel D, Nichols EM, et al. Findings on surveillance imaging after preoperative partial breast irradiation for early stage breast cancer [J/CD]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1374-1381.
3
朱庆莉, 姜玉新. 乳腺影像报告与数据系统指南(第5版)超声内容更新介绍 [J/CD]. 中华医学超声杂志(电子版), 2016, 13(1): 5-7.
4
Abdullah N, Mesurolle B, Elkhoury M, et al. Breast imaging reporting and data system lexicon for US: interobserver agreement for assessment of breast masses [J]. Radiology, 2009, 252(3): 665-672.
5
Xiao X, Jiang Q, Wu H, et al. Diagnosis of sub-centimetre breast lesions: combining BI-RADS-US with strain elastography and contrast-enhanced ultrasound-a preliminary study in China [J]. Eur Radiol, 2016, 27(6): 2443-2450.
6
Guo X, Liu Z, Sun C, et al. Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer [J]. EBioMedicine, 2020, 60: 103018.
7
Tran WT, Sadeghi-Naini A, Lu FI, et al. Computational radiology in breast cancer screening and diagnosis using artificial intelligence [J]. Can Assoc Radiol J, 2021, 72(1): 98-108.
8
Interlenghi M, Salvatore C, Magni V, et al. A machine learning ensemble based on radiomics to predict BI-RADS category and reduce the biopsy rate of ultrasound-detected suspicious breast masses [J]. Diagnostics(Basel), 2022, 12(1): 187.
9
Lei S, Zheng R , Zhang S, et al. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030 [J]. Cancer Biol Med, 2021, 18(3): 1-12.
10
Sant M, Allemani C, Berrino F, et al. Breast carcinomasurvival in Europe and the United States [J]. Cancer, 2004, 100(4): 715-722.
11
Park CS, Lee JH, Yim HW, et al. Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, First Edition (2003) [J]. Korean J Radiol, 2007, 8(5): 397-402.
12
Lee HJ, Kim EK, Kim MJ, et al. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound [J]. Eur J Radiol, 2008, 65(2): 293-298.
13
赖兴建, 朱庆莉, 姜玉新, 等. 乳腺病变超声乳腺影像报告和数据系统(BI-RADS)诊断一致性的评估 [J]. 中华超声影像学杂志, 2010, 19(8): 701-704.
14
Berg WA, D'Orsi CJ, Jackson VP, et al. Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? [J]. Radiology, 2002, 224(3): 871-880.
15
Izumori A, Takebe K, Sato TA. Ultrasound findings and histological features of ductal carcinoma in situ detected by ultrasound examination alone [J]. Breast Cancer, 2010, 17(2): 136-141.
16
陈琮瑛, 王文韬, 余蓉, 等. 乳腺小肿块的超声BI-RADS分析研究 [J]. 中华超声影像学杂志, 2014, 23(11): 957-961.
17
Schmachtenberg C, Fischer T, Hamm B, et al. Diagnostic performance of automated breast volume scanning (ABVS) compared to handheld ultrasonography with breast MRI as the gold standard [J]. Acad Radiol, 2017, 24(8): 954-961.
18
Berg WA. Tailored supplemental screening for breast cancer: what now and what next? [J]. AJR Am J Roentgenol, 2009, 192(2): 390-399.
19
Quon JL, Chen LC, Kim L, et al. Deep learning for automated delineation of pediatric cerebral arteries on pre-operative brain magnetic resonance imaging [J]. Front Surg, 2020, 7: 517375.
20
Klimont M, Oronowicz-Jakowiak A, Flieger M, et al. Deep learning for cerebral angiography segmentation from non-contrast computed tomography [J]. PLoS One, 2020, 15(7): e0237092.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[8] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[13] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[14] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[15] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
阅读次数
全文


摘要