1 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
Natarajan B, Spiegel D, Nichols EM, et al. Findings on surveillance imaging after preoperative partial breast irradiation for early stage breast cancer [J/CD]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1374-1381.
|
3 |
朱庆莉, 姜玉新. 乳腺影像报告与数据系统指南(第5版)超声内容更新介绍 [J/CD]. 中华医学超声杂志(电子版), 2016, 13(1): 5-7.
|
4 |
Abdullah N, Mesurolle B, Elkhoury M, et al. Breast imaging reporting and data system lexicon for US: interobserver agreement for assessment of breast masses [J]. Radiology, 2009, 252(3): 665-672.
|
5 |
Xiao X, Jiang Q, Wu H, et al. Diagnosis of sub-centimetre breast lesions: combining BI-RADS-US with strain elastography and contrast-enhanced ultrasound-a preliminary study in China [J]. Eur Radiol, 2016, 27(6): 2443-2450.
|
6 |
Guo X, Liu Z, Sun C, et al. Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer [J]. EBioMedicine, 2020, 60: 103018.
|
7 |
Tran WT, Sadeghi-Naini A, Lu FI, et al. Computational radiology in breast cancer screening and diagnosis using artificial intelligence [J]. Can Assoc Radiol J, 2021, 72(1): 98-108.
|
8 |
Interlenghi M, Salvatore C, Magni V, et al. A machine learning ensemble based on radiomics to predict BI-RADS category and reduce the biopsy rate of ultrasound-detected suspicious breast masses [J]. Diagnostics(Basel), 2022, 12(1): 187.
|
9 |
Lei S, Zheng R , Zhang S, et al. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030 [J]. Cancer Biol Med, 2021, 18(3): 1-12.
|
10 |
Sant M, Allemani C, Berrino F, et al. Breast carcinomasurvival in Europe and the United States [J]. Cancer, 2004, 100(4): 715-722.
|
11 |
Park CS, Lee JH, Yim HW, et al. Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, First Edition (2003) [J]. Korean J Radiol, 2007, 8(5): 397-402.
|
12 |
Lee HJ, Kim EK, Kim MJ, et al. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound [J]. Eur J Radiol, 2008, 65(2): 293-298.
|
13 |
赖兴建, 朱庆莉, 姜玉新, 等. 乳腺病变超声乳腺影像报告和数据系统(BI-RADS)诊断一致性的评估 [J]. 中华超声影像学杂志, 2010, 19(8): 701-704.
|
14 |
Berg WA, D'Orsi CJ, Jackson VP, et al. Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? [J]. Radiology, 2002, 224(3): 871-880.
|
15 |
Izumori A, Takebe K, Sato TA. Ultrasound findings and histological features of ductal carcinoma in situ detected by ultrasound examination alone [J]. Breast Cancer, 2010, 17(2): 136-141.
|
16 |
陈琮瑛, 王文韬, 余蓉, 等. 乳腺小肿块的超声BI-RADS分析研究 [J]. 中华超声影像学杂志, 2014, 23(11): 957-961.
|
17 |
Schmachtenberg C, Fischer T, Hamm B, et al. Diagnostic performance of automated breast volume scanning (ABVS) compared to handheld ultrasonography with breast MRI as the gold standard [J]. Acad Radiol, 2017, 24(8): 954-961.
|
18 |
Berg WA. Tailored supplemental screening for breast cancer: what now and what next? [J]. AJR Am J Roentgenol, 2009, 192(2): 390-399.
|
19 |
Quon JL, Chen LC, Kim L, et al. Deep learning for automated delineation of pediatric cerebral arteries on pre-operative brain magnetic resonance imaging [J]. Front Surg, 2020, 7: 517375.
|
20 |
Klimont M, Oronowicz-Jakowiak A, Flieger M, et al. Deep learning for cerebral angiography segmentation from non-contrast computed tomography [J]. PLoS One, 2020, 15(7): e0237092.
|