切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (02) : 167 -169. doi: 10.3877/cma.j.issn.1672-6448.2024.02.010

综述

超高分辨超声微血管成像技术在医学领域的研究应用
杨高怡1,(), 王莹2, 张莹3, 俞跃辉2, 张旭3, 林婷4, 童嘉辉4, 陈佩君4, 罗佳磊4, 颜心怡2   
  1. 1. 310006 杭州市第一人民医院;310000 杭州市红十字会医院
    2. 310000 杭州师范大学
    3. 310000 杭州市红十字会医院
    4. 310053 杭州,浙江中医药大学
  • 收稿日期:2023-05-22 出版日期:2024-02-01
  • 通信作者: 杨高怡
  • 基金资助:
    浙江省医药卫生科研项目(2021KY911)

Application of super-resolution ultrasound microvascular imaging in medical field

Gaoyi Yang(), Ying Wang, Ying Zhang   

  • Received:2023-05-22 Published:2024-02-01
  • Corresponding author: Gaoyi Yang
引用本文:

杨高怡, 王莹, 张莹, 俞跃辉, 张旭, 林婷, 童嘉辉, 陈佩君, 罗佳磊, 颜心怡. 超高分辨超声微血管成像技术在医学领域的研究应用[J]. 中华医学超声杂志(电子版), 2024, 21(02): 167-169.

Gaoyi Yang, Ying Wang, Ying Zhang. Application of super-resolution ultrasound microvascular imaging in medical field[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(02): 167-169.

超高分辨超声微血管成像(super-resolution ultrasound microvascular imaging,SRUMI)是超声发展过程中衍生出的新技术,旨在成像和量化超出衍射极限的血管,SRUMI克服了传统超声成像在空间分辨率和穿透深度之间的两难选择,规避了衍射极限,可以使微血管结构可视化达微米级,将重构的超声图像的分辨能力提高10倍,有利于分辨突破衍射极限的物体或结构。目前,SRUMI已应用于临床诊断的各个领域,包括大脑、肾脏、肿瘤和淋巴结等的微血管系统临床前和临床成像研究。本文就近年来关于SRUMI在医学领域的临床前及临床成像应用进展进行综述。

1
Christensen-Jeffries K, Couture O, Dayton PA, et al. Super-resolution ultrasound imaging [J]. Ultrasound Med Biol, 2020, 46(4): 865-891.
2
钟传钰, 郑元义. 超声超分辨率微血流成像研究进展 [J]. 中国医学影像技术, 2021, 37(12): 1799-1805.
3
Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging [J]. Nature, 2015, 527(7579): 499-502.
4
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease[J]. Nat Rev Neurosci, 2004, 5(5): 347-360.
5
Lowerison MR, Sekaran NVC, Zhang W, et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopyin the living mouse [J]. Sci Rep, 2022, 12(1): 1-11.
6
Bourquin C, Poree J, Lesage F, et al. In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy [J]. IEEE Trans Med Imaging, 2022, 41(4): 782-792.
7
Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging [J]. Nature, 2015, 527(7579): 499-502.
8
Soulioti DE, Espindola D, Dayton PA, et al. Super-resolution imaging through the human skull [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2020, 67(1): 25-36.
9
Jeong S, Park SB, Kim SH, et al. Clinical significance of contrast-enhanced ultrasound in chronic kidney disease:a pilot study [J]. J Ultrasound, 2019, 22(4): 453-460.
10
Yi HM, Lowerison MR, Song PF, et al. A review of clinical applications for super-resolution ultrasound localization microscopy [J]. Curr Med Sci, 2022, 42(1): 1-16.
11
Chen Q, Yu J, Rush BM, et al. Ultrasound super-resolution imaging provides a noninvasive assessment of renal microvasculature changes during mouse acute kidney injury [J]. Kidney Int, 2020, 98(2): 355-365.
12
Andersen SB, Taghavi I, Søgaard SB, et al. Super-resolution ultrasound imaging can quantify alterations in microbubble velocities in the renal vasculature of rats [J]. Diagnostics (Basel),  2022, 12(5): 1111.
13
Qiu L, Zhang J, Yang Y, et al. In vivo assessment of hypertensive nephrosclerosis using ultrasound localization microscopy [J].  Med Phys, 2022, 49(4): 2295-2308.
14
Huang C, Zhang W, Gong P, et al. Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: An in-human feasibility study [J]. Phys Med Biol, 2021, 66(8): 10.1088/1361-6560/abef45.
15
Jain RK. Determinants of tumor blood flow: A review [J]. Cancer Res, 1988, 48(10): 2641-2658.
16
Gessner RC, Aylward SR, Dayton PA. Mapping microvasculature with acoustic angiography yields quantifiable differences between healthy and tumor-bearing tissue volumes in a rodent model [J]. Radiology, 2012, 264(3): 733-740.
17
Rao SR, Shelton SE, Dayton PA. The “fingerprint” of cancer extends beyond solid tumor boundaries: Assessment with a novel ultrasound imaging approach [J]. IEEE Trans Biomed Eng, 2015, 63(5): 1082-1086.
18
Lin F, Shelton SE, Espındola D, et al.3D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound [J]. Theranostics, 2017, 7(1): 196-204.
19
Zhang G, Lei YM, Li N, et al. Ultrasound super-resolution imaging for differential diagnosis of breast masses [J]. Front Oncol, 2022, 12: 1049991.
20
Zhang G, Yu J, Lei YM, et al. Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study [J]. Front Oncol, 2022, 12: 978164.
21
Grills IS, Kestin LL, Goldstein N, et al. Risk factors for regional nodal failure after breast-conserving therapy: Regional nodal irradiation reduces rate of axillary failure in patients with four or more positive lymph nodes [J]. Int J Radiat Oncol Biol Phys, 2003, 56(3): 658-670.
22
Zhu J, Rowland EM, Harput S, et al. 3D super-resolution US imaging of rabbit lymph node vasculature in vivo by using microbubbles [J]. Radiology, 2019, 291(3): 642-650.
23
Zhu J, Zhang C, Christensen-Jeffries K, et al. Super-resolution ultrasound localization microscopy of microvascular structure and flow for distinguishing metastatic lymph nodes - an initial human study [J]. Ultraschall Med, 2022, 43(6): 592-598.
24
Qian X, Kang H, Li R, et al. In vivo visualization of eye vasculature using super-resolution ultrasound microvessel imaging [J]. IEEE Trans Biomed Eng, 2020, 67(10): 2870-2880.
25
Hao Y, Wang Q, Yang Y, et al. Non-rigid motion correction for ultrasound localization microscopy of the liver in vivo [C]. Glasgow UK: IEEE International Ultrasonics Symposium (IUS), 2019.
26
Harput S, Christensen-Jeffries K, Brown J, et al. Two-stage motion correction for super-resolution ultrasound imaging in human lower limb [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2018, 65(5): 803-814.
27
Kanoulas E, Butler M, Rowley C, et al. Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D [J]. Investigat Radiol, 2019, 54(8): 500-516.
28
Chen Q, Song H, Yu J, et al. Current development and applications of super-resolution ultrasound imaging [J]. Sensors (Basel), 2021, 21(7): 2417.
29
van Sloun RJG, Solomon O, Bruce M, et al. Super-resolution ultrasound localization microscopy through deep learning [J]. IEEE Trans Med Imaging, 2021, 40(3): 829-839.
30
Brown KG, Ghosh D, Hoyt K. Deep learning of spatiotemporal filtering for fast super-resolution ultrasound imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2020, 67(9): 1820-1829.
No related articles found!
阅读次数
全文


摘要