切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (04) : 361 -369. doi: 10.3877/cma.j.issn.1672-6448.2024.04.003

浅表器官超声影像学

自动乳腺超声联合免疫组化早期预测乳腺癌新辅助化疗病理完全缓解的临床价值
赵阳1, 肖迎聪2, 巨艳3, 党晓智3, 蔡林利2, 薛文欣3, 李洋3, 肖瑶3, 郭妤绮3, 宋宏萍3,()   
  1. 1. 710032 西安,空军军医大学第一附属医院(西京医院)超声医学科;712046 咸阳,陕西中医药大学医学技术学院
    2. 712046 咸阳,陕西中医药大学医学技术学院
    3. 710032 西安,空军军医大学第一附属医院(西京医院)超声医学科
  • 收稿日期:2024-01-19 出版日期:2024-04-01
  • 通信作者: 宋宏萍
  • 基金资助:
    国家自然科学基金面上项目(82071934); 陕西省科技计划项目国合重点项目(2020KWZ-022); 陕西省高等教育教学改革研究重点项目(21JZ009); 空军军医大学临床研究项目(2021LC2210)

Clinical value of automated breast ultrasound combined with immunohistochemistry in early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer

Yang Zhao1, Yingcong Xiao2, Yan Ju3, Xiaozhi Dang3, Linli Cai2, Wenxin Xue3, Yang Li3, Yao Xiao3, Yuqi Guo3, Hongping Song3,()   

  1. 1. Department of Ultrasound Medicine, The First Affiliated Hospital of Air Force Military Medical University(Xijing Hospital), Xi'an 710032, China;Shanxi University of Traditional Chinese Medicine, Xianyang 712046, China
    2. Shanxi University of Traditional Chinese Medicine, Xianyang 712046, China
    3. Department of Ultrasound Medicine, The First Affiliated Hospital of Air Force Military Medical University(Xijing Hospital), Xi'an 710032, China
  • Received:2024-01-19 Published:2024-04-01
  • Corresponding author: Hongping Song
引用本文:

赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 自动乳腺超声联合免疫组化早期预测乳腺癌新辅助化疗病理完全缓解的临床价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 361-369.

Yang Zhao, Yingcong Xiao, Yan Ju, Xiaozhi Dang, Linli Cai, Wenxin Xue, Yang Li, Yao Xiao, Yuqi Guo, Hongping Song. Clinical value of automated breast ultrasound combined with immunohistochemistry in early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(04): 361-369.

目的

探讨自动乳腺超声(ABUS)联合免疫组化早期预测乳腺癌患者新辅助化疗(NAC)后获得病理完全缓解(pCR)的临床价值。

方法

收集2019年3月至2022年6月于空军军医大学第一附属医院(西京医院)乳腺外科收治的420例女性乳腺癌患者,所有患者均经穿刺病理证实为浸润性乳腺癌,患者在行NAC前均行ABUS检查,根据术后病理结果将乳腺癌患者分为pCR组153例和非病理完全缓解(npCR)组267例。采用多因素Logistic回归分析乳腺癌pCR的独立预测因素,构建3种预测模型分别为ABUS特征预测模型、免疫组化预测模型、ABUS联合免疫组化的联合预测模型。绘制3种模型的ROC曲线评估模型效能,通过DeLong检验比较模型的ROC曲线下面积,选择最优模型构建列线图。通过Hosmer-Lemeshow检验分析模型拟合度,采用Bootstrap法对模型进行内部验证,绘制校准度曲线对模型性能进行评估,使用决策曲线评估预测模型的临床获益。

结果

乳腺癌NAC前pCR组与npCR组肿瘤的雌激素受体(ER)状态、孕激素受体(PR)状态、人表皮生长因子受体-2(HER-2)状态、Ki67状态和分子分型差异有统计学意义(P均<0.05);NAC前pCR组与npCR组肿瘤的皮肤侵犯、形态、后方回声、冠状面汇聚征、冠状面白墙征差异有统计学意义(P均<0.05)。多因素Logistic回归分析显示,HER-2状态(OR值:4.396, 95%CI:2.089~9.250)、分子分型(HER-2过表达型OR值:4.124,95%CI:2.069~8.219;三阴性型OR值:4.775,95%CI:2.188~10.422)、皮肤侵犯(OR值:0.110,95%CI:0.038~0.318)、冠状面汇聚征(OR值:0.416,95%CI:0.220~0.787)、冠状面白墙征(OR值:11.192,95%CI:5.316~23.561)是pCR的独立预测因子(P均<0.05)。DeLong检验表明基于ABUS模型和免疫组化特征构建的联合模型的ROC曲线下面积(AUC=0.855)显著高于免疫组化模型(AUC=0.758)和ABUS模型(AUC=0.774),差异均有统计学意义(Z=5.11,P<0.001;Z=5.49,P<0.001);ABUS模型的ROC曲线下面积(AUC=0.774)略高于免疫组化模型(AUC=0.758),但差异无统计学意义(Z=0.55,P=0.58)。Hosmer-Lemeshow检验表明联合模型拟合度良好(χ2=6.175,P=0.519);内部验证结果显示,C-指数为0.856(95%CI:0.810~0.886),表明模型稳定性良好;校准曲线表明联合模型的预测概率与实际概率一致性良好;决策曲线表明在广泛阈值范围内,联合模型具有较好的临床获益。

结论

基于NAC前肿瘤的ABUS特征联合免疫组化构建联合模型可以早期准确预测乳腺癌NAC后pCR,可为乳腺癌患者临床治疗方案的制定提供依据。

Objective

To evaluate the clinical value of automated breast ultrasound (ABUS) combined with immunohistochemistry in early prediction of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients.

Methods

A total of 420 female breast cancer patients admitted to the Department of Breast Surgery, the First Affiliated Hospital of Air Force Military Medical University (Xijing Hospital) from March 2019 to June 2022 were included. All patients were confirmed to have invasive breast cancer by puncture pathology. All patients underwent ABUS examination before NAC. According to the postoperative pathological results, the patients were divided into either a pCR group (n=153) or a non-pathological complete response (npCR) group (n=267). Multivariate Logistic regression was used to identify the independent predictors of pCR in breast cancer. Three prediction models were constructed: ABUS feature prediction model, immunohistochemical prediction model, and ABUS combined with immunohistochemical prediction model. The receiver operating characteristic (ROC) curves of the three models were plotted to evaluate their performance. The area under the ROC curve (AUC) of the models was compared by the Delong test, and the optimal model was selected to construct a nomogram. The fitness of the model was analyzed by the Hosmer-Lemeshow test, and the Bootstrap method was used to verify the model internally. The calibration curve was drawn to evaluate the performance of the model, and the decision curve was used to evaluate the clinical benefit of the prediction model.

Results

There were significant differences in estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor (HER-2) status, Ki67 status, and molecular typing between the pCR group and npCR group before NAC (P<0.05 for all). There were also significant differences in skin invasion, morphology, posterior echo, retraction phenomenon on coronal images, and white wall sign on coronal images between the two groups before NAC (P<0.05 for all). Multivariate Logistic regression analysis showed that HER-2 status (odds ratio [OR]=4.396, 95% confidence interval [CI]: 2.089-9.25), molecular typing (HER-2 overexpression type: OR=4.124, 95%CI: 2.069-8.219; triple negative type (OR=4.775, 95%CI: 2.188-10.422), skin invasion (OR=0.110, 95%CI: 0.038-0.318), retraction phenomenon on coronal images (OR=0.416, 95%CI: 0.220-0.787), and white wall sign on coronal images (OR=11.192, 95%CI: 5.316-23.561) were independent predictors of pCR (P<0.05 for all). The Delong test showed that the AUC (0.855) of the combined model (nomogram) based on the ABUS model and immunohistochemical features was significantly higher than that of the immunohistochemical model (AUC=0.758; Z=5.11, P<0.001) and the ABUS model (AUC=0.774; Z=5.49, P<0.001); the AUC (0.774) of the ABUS model was slightly higher than that of the immunohistochemical model (AUC=0.758 ), but the difference was not statistically significant (Z=0.55, P=0.58). The Hosmer-Lemeshow test showed that the model fit well (χ2=6.175, P=0.519 ). The results of internal validation showed that the average C-index was 0.856 (95%CI: 0.810-0.886), indicating that the model had good stability. Calibration curve analysis showed that the prediction probability of the combined model was in good agreement with the actual probability. Decision curve analysis showed that the combined model had better clinical benefits in a wide range of thresholds.

Conclusion

The combined model based on ABUS features of pre-NAC tumors combined with immunohistochemistry can accurately predict pCR to NAC in breast cancer, which can provide a basis for the formulation of clinical treatment plans for breast cancer patients.

表1 npCR组与pCR组临床病理特征比较 [例(%)]
表2 npCR组与pCR组ABUS特征比较[例(%)]
表3 pCR独立预测因子的多因素Logistic回归分析
图1 3个模型预测病理完全缓解的ROC曲线 注:ABUS为自动乳腺超声
表4 不同模型预测NAC后pCR的ROC曲线效能比较
图2 基于自动乳腺超声和免疫组化特征的联合模型列线图。分子分型1、2、3分别代表Luminal型、HER-2过表达型、三阴性型;HER-2的0、1分别代表阴性、阳性;皮肤侵犯、冠状面汇聚征、冠状面白墙征的0、1分别代表无、有 注:HER-2为人表皮生长因子受体-2;pCR为病理完全缓解
图3 联合预测模型的校准曲线
图4 联合预测模型的决策曲线
图5 患者,52岁,女性,浸润性乳腺癌(Luminal A型),完成新辅助化疗(NAC)后非病理完全缓解(npCR)。图a为自动乳腺超声图像显示冠状面汇聚征,无冠状面白墙征和皮肤侵犯;图b为列线图计算总得分为98分(0+0+98+0+0=98),对应于NAC后病理完全缓解(pCR)率为4%
图6 患者,58岁,女性,浸润性乳腺癌(HER-2过表达型),完成新辅助化疗(NAC)后病理完全缓解(pCR)。图a为自动乳腺超声图像显示冠状面白墙征,无冠状面汇聚征和皮肤侵犯;图b为列线图计算总得分为388分(45+92+98+53+100=388),对应于NAC后pCR率为89%
1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
2
Rauch GM. Precision imaging: one step closer to pretreatment prediction of breast cancer response to neoadjuvant systemic therapy [J]. Radiology, 2023, 308(1): e231482.
3
Kuerer HM, Smith BD, Krishnamurthy S, et al. Eliminating breast surgery for invasive breast cancer in exceptional responders to neoadjuvant systemic therapy: a multicentre, single-arm, phase 2 trial [J]. Lancet Oncol, 2022, 23(12): 1517-1524.
4
Haque W, Vrema V, Hatch S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy [J]. Breast Cancer Res Treat, 2018, 170(3): 559-567.
5
中国超声医学工程学会仪器工程开发专业委员会, 中国抗癌协会肿瘤影像专委会, 中华医学会超声医学分会浅表组织与血管学组. 自动乳腺容积超声技术专家共识(2022版) [J]. 中国超声医学杂志, 2022, 38(3): 241-247.
6
《中国乳腺癌新辅助治疗专家共识(2022年版)》专家组. 中国乳腺癌新辅助治疗专家共识(2022年版)[J].中国癌症杂志, 2022, 32(1): 80-89.
7
Fujii T, Kogawa T, Dong W, et al. Revisiting the definition of estrogen receptor positivity in HER2-negative primary breast cancer [J]. Ann Oncol, 2017, 28(10): 2420-8.
8
Allison KH, Hammond MEH, Dowsett M, et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update [J]. J Clin Oncol, 2020, 38(12): 1346-1366.
9
Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update [J]. Arch Pathol Lab Med, 2018, 142(11): 1364-1382.
10
Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival [J]. Breast, 2003, 12(5): 320-327.
11
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J]. Lancet, 2014, 384(9938): 164-172.
12
Early breast cancer trialists' collaborative group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials [J]. Lancet Oncol, 2018, 19(1): 27-39.
13
Spear GG, Mendelson EB. Automated breast ultrasound: Supplemental screening for average-risk women with dense breasts [J]. Clin Imaging, 2021, 76: 15-25.
14
Huppe AI, Inciardi MF, Aripoli AM, et al. Pearls and pitfalls of interpretation of automated breast US [J]. Radiographics, 2023, 43(10): e230023.
15
Cui H, Zhao D, Han P, et al. Predicting pathological complete response after neoadjuvant chemotherapy in advanced breast cancer by ultrasound and clinicopathological features using a nomogram [J]. Front Oncol, 2021, 11: 718531.
16
Giordano SH, Franzoi MAB, Temin S, et al. Systemic therapy for advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO guideline update [J]. J Clin Oncol, 2022, 40(23): 2612-2635.
17
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC [J]. Cancers (Basel), 2020, 12(4): 916.
18
Dastilva JL, Cradosonunes NC, Izetti P, et al. Triple negative breast cancer: A thorough review of biomarkers [J]. Crit Rev Oncol Hematol, 2020, 145: 102855.
19
Houssami N, Macaskill P, von Minckwitz G, et al. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy [J]. Eur J Cancer, 2012, 48(18): 3342-3354.
20
Ishitobi M, Ohsumi S, Inaji H, et al. Ipsilateral breast tumor recurrence (IBTR) in patients with operable breast cancer who undergo breast-conserving treatment after receiving neoadjuvant chemotherapy: risk factors of IBTR and validation of the MD Anderson Prognostic Index [J]. Cancer, 2012, 118(18): 4385-4393.
21
Baumgartner A, Tausch C, Hosch S, et al. Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients [J]. Breast, 2018, 39: 19-23.
22
Lin X, Wang J, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound [J]. Eur J Radiol, 2012, 81(5): 873-878.
23
Chang CY, Kuo SJ, Wu HK, et al. Stellate masses and histologic grades in breast cancer [J]. Ultrasound Med Biol, 2014, 40(5): 904-916.
24
De numzio M, Evans A, Pinder S, et al. Correlations between the mammographic features of screen detected invasive breast cancer and pathological prognostic factors [J]. The Breast, 1997, 6(3): 146-149.
25
Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women [J]. Eur Radiol, 2018, 28(2): 592-601.
26
Zhang L, Li J, Xiao Y, et al. Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision [J]. Sci Rep, 2015, 5: 11085.
27
Zheng FY, LU Q, Huang BJ, et al. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer [J]. Eur J Radiol, 2017, 86: 267-275.
28
Liang X, LI Z, Zhang L, et al. Application of contrast-enhanced ultrasound in the differential diagnosis of different molecular subtypes of breast cancer [J]. Ultrason Imaging, 2020, 42(6): 261-270.
29
Bae MS, Shin SU, Song SE, et al. Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1-T2N0 breast cancer [J]. Acta Radiol, 2018, 59(4): 402-408.
30
Huang Z, Jin S, Zeng M, et al. Clinical and therapeutic factors vary by prognosis in patients with pathological complete response after neoadjuvant therapy for breast cancer [J]. Cancer Manag Res, 2021, 13: 9235-9246.
31
Mazari FAK, Sharma N, Dodwell D, et al. Human epidermal growth factor 2-positive breast cancer with mammographic microcalcification: relationship to pathologic complete response after neoadjuvant chemotherapy [J]. Radiology, 2018, 288(2): 366-374.
32
唐益勇, 李晓琴, 施燕芸, 等. 超声结合钼靶成像及Ki-67表达对乳腺癌新辅助化疗疗效的预测价值 [J/OL]. 中华医学超声杂志(电子版), 2021, 18(6): 564-569.
33
Hou N, Xiao J, Wang Z, et al. Development and validation of a nomogram for individually predicting pathologic complete remission after preoperative chemotherapy in Chinese breast cancer: A population-based study [J]. Clin Breast Cancer, 2020, 20(6): e682-e694.
[1] 蔡林利, 宋宏萍, 巨艳, 党晓智, 韩铭, 肖迎聪. 超声结合临床病理指标模型对T1-2期乳腺癌腋窝淋巴结转移的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 143-150.
[2] 何欣林, 阎昊铮, 赵亦非, 江彩霞, 李征宇. 新辅助化疗联合间歇性肿瘤细胞减灭术对上皮性卵巢癌患者预后及血清学与影像学指标对患者预后的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 47-57.
[3] 贺媛媛, 李佳, 杨红. 宫颈中肾腺癌1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 97-104.
[4] 蒙燕, 唐如冰, 蒋奕, 陆华, 苏玉兰, 张琼, 何英煜. 基于多学科协作的预防性淋巴管-静脉吻合术在乳腺癌腋窝淋巴结清扫患者中的应用[J]. 中华损伤与修复杂志(电子版), 2024, 19(03): 204-207.
[5] 曹彤瑜, 沈余明. 乳癌术后放疗致胸壁放射性溃疡创面的重建流程[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 184-184.
[6] 陈怡芳, 黄晓卉. 肝细胞癌中对氧磷酶2的表达及临床意义[J]. 中华普通外科学文献(电子版), 2024, 18(03): 186-191.
[7] 孟宇, 李金超, 刘金来, 刘晨, 王振勇. 新辅助化疗后LPD钩突切除中先动脉后静脉原则的安全性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 251-254.
[8] 刘政宏, 王凤力, 吉亚君, 高佳. 胃癌中ELK3蛋白的表达与临床病理特征和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 155-159.
[9] 祝启路, 邹佳悦, 肖均喜, 侍阳. Easy First策略在新辅助化疗后腹腔镜胰十二指肠切除术中的临床疗效研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 200-203.
[10] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[11] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[12] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[13] 黄洪, 徐庆春, 马凯群, 陈麒升, 周奕洲, 李雁锋, 曹思哲, 张永海. 广东省医学会泌尿外科疑难病例多学科会诊(第13期)[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 193-197.
[14] 孙伟, 刘敬峰, 陈晨, 杨磊. 奥沙利铂联合卡培他滨新辅助化疗治疗局部进展期低位直肠癌的疗效及影响因素[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 208-212.
[15] 赵莉, 张敏伟, 于海侠, 张宇萌, 丰金岭, 李德春. 组织标记夹置入在评估乳腺癌术前新辅助化疗疗效中的应用价值[J]. 中华介入放射学电子杂志, 2024, 12(02): 166-170.
阅读次数
全文


摘要