切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (02) : 143 -150. doi: 10.3877/cma.j.issn.1672-6448.2024.02.006

浅表器官超声影像学

超声结合临床病理指标模型对T1-2期乳腺癌腋窝淋巴结转移的预测价值
蔡林利1, 宋宏萍2, 巨艳2, 党晓智2, 韩铭3, 肖迎聪4,()   
  1. 1. 712046 西安,陕西中医药大学医学技术学院;710032 西安,空军军医大学第一附属医院(西京医院)超声医学科
    2. 710032 西安,空军军医大学第一附属医院(西京医院)超声医学科
    3. 710032 西安,空军军医大学第一附属医院(西京医院)病理科
    4. 712046 西安,陕西中医药大学医学技术学院
  • 收稿日期:2023-08-29 出版日期:2024-02-01
  • 通信作者: 肖迎聪
  • 基金资助:
    国家自然科学基金面上项目(82071934); 陕西省科技计划项目国合重点项目(2020KWZ-022); 陕西省高等教育教学改革研究重点项目(21JZ009); 空军军医大学临床研究项目(2021LC2210)

Predictive value of a model developed based on ultrasonic features combined with clinicopathological indicators for axillary lymph node metastasis in patients with T1-2 breast cancer

Linli Cai1, Hongping Song2, Yan Ju2, Xiaozhi Dang2, Ming Han3, Yingcong Xiao4,()   

  1. 1. Shool of Medical Technology, Shaanxi University of Chinese Medicine, Xi'an 712046, China;Department of Ultrasound, Xijing Hospital, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
    2. Department of Ultrasound, Xijing Hospital, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
    3. Department of Pathology, Xijing Hospital, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
    4. Shool of Medical Technology, Shaanxi University of Chinese Medicine, Xi'an 712046, China
  • Received:2023-08-29 Published:2024-02-01
  • Corresponding author: Yingcong Xiao
引用本文:

蔡林利, 宋宏萍, 巨艳, 党晓智, 韩铭, 肖迎聪. 超声结合临床病理指标模型对T1-2期乳腺癌腋窝淋巴结转移的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 143-150.

Linli Cai, Hongping Song, Yan Ju, Xiaozhi Dang, Ming Han, Yingcong Xiao. Predictive value of a model developed based on ultrasonic features combined with clinicopathological indicators for axillary lymph node metastasis in patients with T1-2 breast cancer[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(02): 143-150.

目的

应用超声特征及临床病理指标构建列线图模型,探讨其对T1、T2期乳腺癌患者腋窝淋巴结转移的预测价值。

方法

纳入2021年1月至2022年9月于西京医院诊治的经病理证实为T1、T2期乳腺癌的患者354例,根据腋窝淋巴结病理状态将其分为转移组125例与非转移组229例。采用单因素及多因素Logistic回归分析筛选独立预测因素,构建腋窝超声模型及综合模型(腋窝超声特征+乳腺超声特征+临床病理指标)。绘制ROC曲线评估模型的预测效能并通过Delong检验比较预测效能;绘制综合模型的列线图并通过Hosmer-Lemeshow检验、校准曲线、临床决策曲线分别评估模型的拟合优度、校准度及临床效用。

结果

淋巴结长短径比值、淋巴结形态分型、肿瘤最大径、结构扭曲、体质量指数(BMI)、组织学分级、雌激素受体(ER)为腋窝淋巴结转移的独立预测因素(均P<0.05)。腋窝超声模型、综合模型的ROC曲线下面积(AUC)分别为0.741(95%CI: 0.684~0.758)、0.812(95%CI: 0.767~0.858),综合模型的预测效能优于腋窝超声模型(Z=3.547,P<0.001)。

结论

在腋窝超声基础上结合乳腺癌超声特征和临床病理指标构建列线图模型,能够提升腋窝淋巴结转移的诊断性能,为乳腺癌的分期、预后和治疗提供有效参考。

Objective

To construct a nomogram based on ultrasonic features and clinicopathological indicators and to explore its predictive value for axillary lymph node metastasis in patients with T1-2 breast cancer.

Methods

A total of 354 patients with histopathologically confirmed T1-2 breast cancer admitted to Xijing Hospital from January 2021 to September 2022 were included. According to whether there was axillary lymph node metastasis, the patients were divided into a metastatic group of 125 cases and a non-metastatic group of 229 cases. Univariate and multivariate Logistic regression analyses were used to screen independent predictors, and the axillary ultrasound model and comprehensive model (axillary ultrasound features + breast ultrasound features + clinicopathological indicators) were constructed. Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive efficiency of the models, and the predictive efficiency was compared by the Delong's test. A nomogram of the comprehensive model was plotted, and the goodness of fit, calibration, and clinical utility of the model were evaluated by the Hosmer-Lemeshow test as well as calibration curve and decision curve analyses.

Results

The ratio of long diameter to short diameter of lymph nodes, morphological typing of lymph nodes, maximum tumor diameter, architectural distortion, body mass index, histological grade, and estrogen receptor status were identified to be independent predictors of axillary lymph node metastasis (P<0.05 for all). The areas under the ROC curves of the axillary ultrasound model and the comprehensive model were 0.741 (0.684-0.758) and 0.812 (0.767-0.858), respectively. The prediction efficiency of the comprehensive model was greater than that of the axillary ultrasound model (Z=3.5472, P<0.001).

Conclusion

The nomogram developed based on axillary ultrasonic features combined with clinicopathological indicators of breast cancer can improve the diagnostic efficiency for axillary lymph nodes metastasis, and provide effective reference for the staging, prognosis, and treatment of breast cancer.

图1 乳腺癌伴腋窝淋巴结转移患者的超声及病理图像。图a为乳腺肿块灰阶图像,显示肿块位于外下象限,最大径为2.0 cm;图b为乳腺肿块彩色多普勒图像,显示肿块内部血供;图c为腋窝淋巴结灰阶图像,显示形态分型为5型;图d为HE染色显示病理类型为浸润性微乳头状癌(×200);图e~h为免疫组化分别显示ER阳性(×200)、PR阳性(×200)、HER-2阴性(×200)、Ki67低表达(×200)
图2 乳腺癌不伴腋窝淋巴结转移患者的超声及病理图像。图a为乳腺肿块灰阶图像,显示肿块位于内上象限,最大径为2.3 cm;图b为乳腺肿块彩色多普勒图像,显示肿块内部血供;图c为腋窝淋巴结灰阶图像,显示形态分型为2型;图d为HE染色显示病理类型为伴髓样特征的浸润性癌(×200);图e~h为免疫组化分别显示ER阴性(×200)、PR阴性(×200)、HER-2阴性(×200)、Ki67高表达(×200)
表1 腋窝淋巴结转移组与未转移组乳腺癌患者的基线特征[例(%)]
表2 乳腺癌患者腋窝淋巴结转移的单因素Logistic回归分析结果
因素 OR值(95%CI) P 因素 OR值(95%CI) P
年龄 边缘
≤45 1 光整 1
>45 0.788(0.484~1283) 0.338 不光整 1.282(0.326~5.048) 0.722
肿瘤最大径 1.732(1.338~2.241) <0.001 内部回声 0.603
绝经状态 低回声 1
绝经前 1 等回声 0.445(0.049~4.027) 0.471
绝经后 0.958(0.618~1.485) 0.848 囊实性复合回声 0.485(0.133~1.774) 0.274
BMI 1.111(1.029~1.199) 0.008 不均匀回声 1.335(0.294~6.065) 0.709
病理类型 0.728 后方回声 0.035
浸润性导管癌 1 无改变 1
浸润性小叶癌 0.889(0.262~3.019) 0.851 增强 0.782(0.361~1.295) 0.534
其他类型 0.712(0.304~1.667) 0.433 声影 1.953(1.055~3.617) 0.033
组织学分级 0.034 混合性 8.138(0.896~73.908) 0.063
1级 1 钙化
2级 2.681(1.140~6.306) 0.024 1
3级 3.536(1.359~9.198) 0.010 1.176(0.728~1.901 0.507
ER 结构扭曲
阴性 1 1
阳性 2.290(1.018~5.148) 0.045 2.235(1.116~4.477) 0.023
PR 导管改变
阴性 1 1
阳性 1.744(0.927~3.281) 0.084 0.756(0.321~1.780) 0.522
HER-2 0.087 血流 0.240
阴性 1 无血供 1
阳性 0.353(0.130~0.956) 0.040 内部血供 1.153(0.208~6.395) 0.871
不确定 1.144(0.693~1.889) 0.600 边缘血供 0.480(0.071~3.264) 0.453
Ki67 内部及边缘血供 2.000(0.224~17.894) 0.535
<14% 1 弹性评分
≥14% 1.007(0.995~1.018) 0.258 ≤3 1
象限 >3 1.415(0.598~3.346) 0.429
外上 1 淋巴结长短径比值
其他 1.032(0.665~1.601) 0.889 >2 1
方位 ≤2 2.858(1.744~4.685) <0.001
平行 1 淋巴结形态分型 <0.001
不平行 1.019(0.455~2.282) 0.963 1-2型 1
形态 3-4型 1.786(0.934~3.415) 0.080
规则 1 5-6型 11.508(6.213~21.316) <0.001
不规则 1.646(0.169~15.992) 0.667
表3 乳腺癌患者腋窝淋巴结转移的多因素Logistic回归分析结果
图3 腋窝超声模型与综合模型预测腋窝淋巴结转移的ROC曲线
图4 综合模型预测乳腺癌腋窝淋巴结转移的列线图 注:BMI为体质量指数;ER为雌激素受体
图5 列线图模型预测腋窝淋巴结转移的校准曲线
图6 列线图模型预测腋窝淋巴结转移的临床决策曲线
1
Chang JM, Leung J, Moy L, et al. Axillary nodal evaluation in breast cancer: state of the art[J]. Radiology, 2020, 295: 500-515.
2
Magnoni F, Galimberti V, Corso G, et al. Axillary surgery in breast cancer: An updated historical perspective[J]. Semin Oncol, 2020, 47: 341-352.
3
Marino MA, Avendano D, Zapata P, et al. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools[J]. Oncologist, 2020, 25(2): e231-e242.
4
Le Boulc'h M, Gilhodes J, Steinmeyer Z, et al. Pretherapeutic imaging for axillary staging in breast cancer: a systematic review and meta-analysis of ultrasonography, MRI and FDG PET[J]. J Clin Med, 2021, 10(7): 1543.
5
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040.
6
Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis[J]. Radiology, 2006, 239(2): 341-350.
7
Bedi DG, Krishnamurthy R, Krishnamurthy S, et al. Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer: in vitro sonographic study[J]. AJR Am J Roentgenol, 2008, 191(3): 646-652.
8
Kim GR, Choi JS, Han BK, et al. Preoperative axillary US in early-stage breast cancer: potential to prevent unnecessary axillary lymph node dissection[J]. Radiology, 2018, 288(1): 55-63.
9
邵华, 那子悦, 荆慧, 等. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(8): 849-853.
10
Niinikoski L, Hukkinen K, Leidenius M, et al. Axillary nodal metastatic burden in patients with breast cancer with clinically positive axillary nodes[J]. Br J Surg, 2020, 107(12): 1615-1624.
11
Lai J, Pan Z, Chen P, et al. Development and validation of a nomogram incorporating axillary lymph node ratio to predict survival in node-positive breast cancer patients after neoadjuvant chemotherapy[J]. Jpn J Clin Oncol, 2019, 49(1):22-28.
12
Chung HL, Le-Petross HT, Leung JWT. Imaging updates to breast cancer lymph node management[J]. Radiographics, 2021, 41(5): 1283-1299.
13
Yu FH, Wang JX, Ye XH, et al. Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer[J]. Eur J Radiol, 2019, 19: 108658.
14
桑田, 任学刚, 王烨, 等. 超声联合病理参数预测乳腺癌腋窝淋巴结转移的价值[J]. 中华超声影像学杂志, 2022, 31(8): 691-697.
15
Mendelson EB, Böhm-Vélez M, Berg WA, et al. ACR BI-RADS® Ultrasound[M]// ACR. Breast Imaging Reporting and Data System. Reston,VA: American College of Radiology, 2013.
16
Zhang G, Shi Y, Yin P, et al. A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP[J]. Front Oncol, 2022, 12: 944569.
17
Xiong J, Zuo W, Wu Y, et al. Ultrasonography and clinicopathological features of breast cancer in predicting axillary lymph node metastases[J]. BMC Cancer, 2022, 22(1): 1155.
18
王文彦, 孟祥志, 李霓, 等. 基于SEER数据库回顾性分析T1期乳腺癌腋窝淋巴结转移和预后影响因素[J]. 中华医学杂志, 2021, 101(27): 2152-2158.
19
Fu Y, Jiang J, Chen S, et al. Establishment of risk prediction nomogram for ipsilateral axillary lymph node metastasis in T1 breast cancer[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2021, 50(1):81-89.
20
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, et al. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention[J]. CA Cancer J Clin, 2017, 67(5): 378-397.
[1] 朱成美, 赵巧梅, 邓学东. 经阴道超声联合生理盐水灌注直肠子宫陷凹对腹膜型子宫内膜异位症的诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(01): 32-36.
[2] 罗润兰, 蒋文莉, 张艳, 罗渝昆. 超声高清微血流成像技术在鉴别乳腺良恶性结节中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1242-1247.
[3] 王铭, 杨萌, 赵瑞娜, 王若蛟, 陶葸茜, 齐振红, 张一休, 苏娜, 张睿, 刘思锐, 李建初, 姜玉新. 基于EULAR-OMERACT评分系统的类风湿关节炎超声评估效果研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1248-1253.
[4] 唐博, 罗季平, 周桃, 黄多, 刘廷琼, 陈亚萍, 岳文胜. 慢性肾衰竭血液透析患者造瘘侧上肢肱动脉-指端微小动脉血流动力学变化特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1276-1281.
[5] 广东省医学会乳腺病学分会(广东省医学会乳腺病学分会青年委员会), 长江学术带乳腺联盟, 重庆市医学会乳腺病分会, 广东省预防医学会乳腺癌防治专业委员会. 三阴性乳腺癌新辅助铂类应用专家共识(2023版)[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 1-10.
[6] 唐艳, 赵小虎, 栗玉姣, 顾向梅. 针刀治疗老年膝骨关节炎的肌骨超声特征与疗效相关性[J]. 中华关节外科杂志(电子版), 2024, 18(01): 48-53.
[7] 陈晓霞, 钟文素, 郑宝群. 声触诊组织成像量化技术评估类风湿关节炎活动性[J]. 中华关节外科杂志(电子版), 2024, 18(01): 54-59.
[8] 曹彤瑜, 沈余明. 乳癌术后放疗致胸壁放射性溃疡创面的重建流程[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 184-184.
[9] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[10] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[11] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[12] 何宗杰, 白辰光, 高显华, 张卫. 幼年性息肉病的临床病理学特征及研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(01): 21-25.
[13] 苑乐添, 王艺霖, 沈子剑, 闫呈新. 血清GDF15、sB7-H1联合多层螺旋CT灌注成像技术对胃癌患者淋巴结转移的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 62-66.
[14] 初桂芝, 王淑娟, 栾文杰, 郭桂敏, 官春霞, 武晓峰, 李松洋, 王好玲, 栾泽东. 早孕期羊膜带综合征产前超声诊断分析[J]. 中华诊断学电子杂志, 2024, 12(01): 57-60.
[15] 杜梅霞, 闫萌萌, 肖丽珊, 张芳芳, 姜彩云, 赵诚, 姚国栋, 宁春平. 痛风患者第一跖趾关节超声征象与临床疼痛的相关性分析[J]. 中华诊断学电子杂志, 2024, 12(01): 31-37.
阅读次数
全文


摘要