切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (05) : 447 -453. doi: 10.3877/cma.j.issn.1672-6448.2024.05.001

专家论坛

基于模拟技术的产科超声实践技能评估现状与展望
赵永锋1, 周平1, 唐晓鸿2,()   
  1. 1. 410013 中南大学湘雅三医院超声科
    2. 410013 中南大学湘雅三医院临床技能训练中心
  • 收稿日期:2023-11-05 出版日期:2024-05-01
  • 通信作者: 唐晓鸿
  • 基金资助:
    湖南省教育科学“十四五”规划课题(XJK21AGD002)

Current status and future prospects of simulation based obstetric ultrasound practical skill assessment

Yongfeng Zhao, Ping Zhou, Xiaohong Tang()   

  • Received:2023-11-05 Published:2024-05-01
  • Corresponding author: Xiaohong Tang
引用本文:

赵永锋, 周平, 唐晓鸿. 基于模拟技术的产科超声实践技能评估现状与展望[J]. 中华医学超声杂志(电子版), 2024, 21(05): 447-453.

Yongfeng Zhao, Ping Zhou, Xiaohong Tang. Current status and future prospects of simulation based obstetric ultrasound practical skill assessment[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(05): 447-453.

产科超声检查是运用超声波评估胎儿生长发育、系统性筛查胎儿畸形,有助于降低围产儿死亡率,提高出生人口质量,是产前诊断不可或缺的方法。产科超声高度依赖检查者的技能水平,难度大,风险高,医疗差错占超声医疗差错的78%。回顾包含90万例胎儿样本的36项研究发现,超声检查胎儿异常的敏感度仅为40%。因此,超声医师需要进行充分培训以达到基本的技能水平,这些技能包括理论知识、实践操作技能以及对二者的整合能力。实践操作技能是超声基本技能的重要组成部分,超声医师需要了解如何优化超声诊断仪参数;熟练操作探头获取恰当的切面对胎儿的解剖结构进行观察与测量,做到手眼协调;将获取的二维超声图像在脑海里进行三维重建;对获取的超声图像进行实时判读。产科超声工作对于超声医师极具挑战性,不正确的操作将影响诊断的准确性,导致漏诊与误诊。

表1 产科超声实践技能评估方法回顾
作者 出版年份 评估内容 评价方法 合格标准 信效度分析
Zhao等21 2024 中孕期产科超声检查 运用核查表评估检查流程、图像质量、测量方法
中国医师协会超声医师分会10 2022 早孕期与中孕期标准切面图像、生物学测量 依据图像优化、切面呈现的解剖结构、测量方法评价图像质量
Dromey等26 2021 中孕期生物学测量 分析探头移动数据
赵永锋等17 2021 中孕期产科超声检查 运用核查表评估检查流程、图像质量、测量方法
Andreasen等20 2019 预测胎儿体质量 分析预测值与胎儿实际出生体质量之间的偏差
ISUOG11 2018 早孕期与中孕期标准切面图像、生物学测量 依据图像优化、切面呈现的解剖结构、测量方法评价图像质量
Rosen等22 2017 中孕期颅脑切面 运用等级评分表从图像优化、获取解剖标志、解剖标志的准确性三个方面进行评分
Chalouhi等16 2016 中孕期生物学测量,四腔心、右心室流出道、双肾、胃/膈肌、脊柱、颜面部切面 主观将技能灵巧性评为0~10分
Dyre等25 2016 中孕期生物学测量及解剖结构筛查 模拟器内置评估模块自动分析每项任务是否通过
Tolsgaard等23 2014 中孕期生物学测量 运用等级评分表从仪器使用、图像优化、系统性检查、图像判读、数据记录5个维度综合评价
Burden等24 2013 中孕期生物学测量 分析测量值与参考值之间的偏差
Salomon等19 2008 中孕期四腔心、右心室流出道、双肾、胃/膈肌、脊柱、颜面部切面 依据图像优化、切面呈现的解剖结构对图像质量评分
1
Callen PW. Ultrasonography in obstetrics and gynecology [M]. 5th. Philadelphia: Saunders Elsevier, 2007: 1-20.
2
Yeo L, Romero R. Optical ultrasound simulation-based training in obstetric sonography[J]. J Matern Fetal Neonatal Med, 2022, 35(13): 2469-2484.
3
李胜利, 邓学东. 产前超声检查指南(2012)[J/CD]. 中华医学超声杂志(电子版), 2012, 9(7): 1-3.
4
ISUOG Education Committee recommendations for basic training in obstetric and gynecological ultrasound[J]. Ultrasound Obstet Gynecol, 2014, 43(1): 113-116.
5
Minimum training requirements for the practice of medical ultrasound in Europe[J]. Ultraschall Med, 2010, 31(4): 426-427.
6
AIUM. AIUM practice guideline for the performance of obstetric ultrasound examinations[J]. J Ultrasound Med, 2013, 32(6): 1083-1101.
7
Damewood SC, Leo M, Bailitz J, et al. Tools for measuring clinical ultrasound competency: recommendations from the Ultrasound Competency Work Group[J]. AEM Educ Train, 2020, 4(Suppl 1): S106-S112.
8
Tolsgaard MG. A multiple-perspective approach for the assessment and learning of ultrasound skills[J]. Perspect Med Educ, 2018, 7(3): 211-213.
9
Holmboe ES, Sherbino J, Long DM, et al. The role of assessment in competency-based medical education[J]. Med Teach, 2010, 32(8): 676-682.
10
中国医师协会超声医师分会. 产科超声规范化培训考核标准中国专家共识(2022版)[J]. 中华超声影像学杂志, 2022, 31(5): 369-378.
11
Abuhamad A, Minton KK, Benson CB, et al. Obstetric and gynecologic ultrasound curriculum and competency assessment in residency training programs: consensus report[J]. J Ultrasound Med, 2018, 37(1): 19-50.
12
齐旭, 唐少珊. 辽宁省住院医师规范化培训超声医学专业技能结业考核结果分析[J]. 中国高等医学教育, 2020(3): 6-7.
13
刘雁, 林思宇. 北京市超声医学专业住院医师结业技能考核结果分析与思考[J]. 医学教育管理, 2020, 6(5): 492-496.
14
Grandjean GA, Bertholdt C, Zuily S, et al. Fetal biometry in ultrasound: a new approach to assess the long-term impact of simulation on learning patterns[J]. J Gynecol Obstet Hum Reprod, 2021, 50(8): 102135.
15
Andreasen LA, Tabor A, Nørgaard LN, et al. Multicenter randomized trial exploring effects of simulation-based ultrasound training on obstetricians' diagnostic accuracy: value for experienced operators[J]. Ultrasound Obstet Gynecol, 2020, 55(4): 523-529.
16
Chalouhi GE, Bernardi V, Gueneuc A, et al. Evaluation of trainees' ability to perform obstetrical ultrasound using simulation: challenges and opportunities[J]. Am J Obstet Gynecol, 2016, 214(4): 521-525.
17
赵永锋, 唐晓鸿, 彭洪, 等. 模拟器在住院医师产科超声检查技能评估中的应用[J]. 中华医学教育杂志, 2021, 41(7): 601-605.
18
Sheehan FH, McConnaughey S, Freeman R, et al. Formative assessment of performance in diagnostic ultrasound using simulation and quantitative and objective metrics[J]. Mil Med, 2019, 184(Suppl 1): 386-391.
19
Salomon LJ, Winer N, Bernard JP, et al. A score-based method for quality control of fetal images at routine second-trimester ultrasound examination[J]. Prenat Diagn, 2008, 28(9): 822-827.
20
Andreasen LA, Tabor A, Nørgaard LN, et al. Is simulation training only for inexperienced trainees? Exploring the effects of simulation‐based ultrasound training on obstetricians' diagnostic accuracy[J]. Ultrasound Obstet Gynecol, 2019, 54(S1): 84.
21
Zhao Y, Zhou P, Zhu W, et al. Validity evidence for simulator-based obstetric ultrasound competency assessment tool: a multi-center study[J]. Ultraschall Med, 2024, 45(2): 168-175.
22
Rosen H, Windrim R, Lee YM, et al. Simulator based obstetric ultrasound training: a prospective, randomized single-blinded study[J]. J Obstet Gynaecol Can, 2017, 39(3): 166-173.
23
Tolsgaard MG, Ringsted C, Dreisler E, et al. Reliable and valid assessment of ultrasound operator competence in obstetrics and gynecology[J]. Ultrasound Obstet Gynecol, 2014, 43(4): 437-443.
24
Burden C, Preshaw J, White P, et al. Usability of virtual-reality simulation training in obstetric ultrasonography: a prospective cohort study[J]. Ultrasound Obstet Gynecol, 2013, 42(2): 213-217.
25
Dyre L, Norgaard LN, Tabor A, et al. Collecting validity evidence for the assessment of mastery learning in simulation-based ultrasound training[J]. Ultraschall Med, 2016, 37(4): 386-392.
26
Dromey BP, Ahmed S, Vasconcelos F, et al. Dimensionless squared jerk: An objective differential to assess experienced and novice probe movement in obstetric ultrasound[J]. Prenat Diagn, 2021, 41(2): 271-277.
27
Salomon LJ, Alfirevic Z, Berghella V, et al. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan[J]. Ultrasound Obstet Gynecol, 2022, 59(6): 840-856.
28
American Educational Research Association, American Psychological Association, National Council On Measurement in Education. Standards for educational and psychological testing [M]. Washington DC: American Educational Research Association, 2014: 11-31.
29
Gueneuc A, De Garnier J, Dommergues M, et al. Impact of sonography simulation in the training of midwifery students[J]. Gynecol Obstet Fertil Senol, 2019, 47(11): 776-782.
30
Pedrett R, Mascagni P, Beldi G, et al. Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review[J]. Surg Endosc, 2023, 37(10): 7412-7424.
31
Drukker L, Noble JA, Papageorghiou AT. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology[J]. Ultrasound Obstet Gynecol, 2020, 56(4): 498-505.
32
Thomas PA, Kern DE, Hughes MT, et al. Curriculum development for medical education: a six-step approach [M]. Fourth edition. Baltimore, Maryland: The Johns Hopkins University Press, 2022: 159-174.
No related articles found!
阅读次数
全文


摘要