切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (07) : 737 -740. doi: 10.3877/cma.j.issn.1672-6448.2024.07.016

综述

声动力疗法联合仿生药物递送系统的抗肿瘤研究进展
张安妮1, 余皙娟1, 刘治军1,()   
  1. 1. 110000 辽宁沈阳,中国医科大学附属盛京医院超声科
  • 收稿日期:2023-12-12 出版日期:2024-07-01
  • 通信作者: 刘治军
  • 基金资助:
    国家自然科学基金青年科学基金项目(81801712); 辽宁省科学技术计划医工交叉联合基金项目(2022-YGJC-47)

Progress in research of anti-tumor effects of sonodynamic therapy combined with biomimetic drug delivery system

Anni Zhang, Xijuan Yu, Zhijun Liu()   

  • Received:2023-12-12 Published:2024-07-01
  • Corresponding author: Zhijun Liu
引用本文:

张安妮, 余皙娟, 刘治军. 声动力疗法联合仿生药物递送系统的抗肿瘤研究进展[J]. 中华医学超声杂志(电子版), 2024, 21(07): 737-740.

Anni Zhang, Xijuan Yu, Zhijun Liu. Progress in research of anti-tumor effects of sonodynamic therapy combined with biomimetic drug delivery system[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(07): 737-740.

声动力疗法(sonodynamic therapy,SDT)作为一种源自光动力疗法的新型治疗方法,将声敏剂与低强度超声的优势相结合,克服了光动力疗法穿透深度浅以及光毒性等问题。本篇综述将重点介绍肿瘤SDT在仿生纳米医疗方面的最新进展,包括其可能的作用机制以及与其他肿瘤治疗方式的协同效应。此外,还讨论了SDT潜在的局限性和未来前景。

1
陶琳, 吴长君. 声动力疗法在癌症综合治疗中的应用现状 [J/OL]. 中华医学超声杂志(电子版), 2022, 19(11): 1157-1159.

URL    
2
Mchale AP, Callan JF, Nomikou N, et al. Sonodynamic therapy: concept, mechanism and application to cancer treatment [J]. Adv Exp Med Biol, 2016, 880: 429-450.
3
Li C, Yang XQ, An J, et al. Red blood cell membrane-enveloped O(2) self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy [J]. Theranostics, 2020, 10(2): 867-879.
4
Kinoshita R, Ishima Y, Chuang VTG, et al. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer [J]. Biomaterials, 2017, 140: 162-169.
5
Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance [J]. J Cell Biol, 2018, 217(7): 2291-2298.
6
Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells [J]. Science, 2000, 288(5473): 2051-2054.
7
Wang D, Yao Y, Xiao Y, et al. Ultrasound responsive erythrocyte membrane-derived hybrid nanovesicles with controlled drug release for tumor therapy [J]. Nanoscale, 2021, 13(22): 9945-9951.
8
Zhou A, Fang T, Chen K, et al. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer [J]. Small, 2022, 18(12): e2106568.
9
Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase [J]. Biochim Biophys Acta, 2003, 1620(1-3): 211-217.
10
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 2010, 48(12): 909-930.
11
Bao Y, Chen J, Qiu H, et al. Erythrocyte membrane-camouflaged PCN-224 nanocarriers integrated with platinum nanoparticles and glucose oxidase for enhanced tumor sonodynamic therapy and synergistic starvation therapy [J]. ACS Appl Mater Interfaces, 2021, 13(21): 24532-24542.
12
Li Q, Lin B, Li Y, et al. Erythrocyte-camouflaged mesoporous titanium dioxide nanoplatform for an ultrasound-mediated sequential therapies of breast cancer [J]. Int J Nanomedicine, 2021, 16: 3875-3887.
13
Hu Q, Sun W, Qian C, et al. Anticancer platelet-mimicking nanovehicles [J]. Adv Mater, 2015, 27(44): 7043-7050.
14
Wang M, Xu H, Li T, et al. Sonodynamic therapy of glioblastoma mediated by platelets with ultrasound-triggered drug release [J]. Drug Deliv, 2023, 30(1): 2219429.
15
Chen F, Xue Q, He N, et al. The association and application of sonodynamic therapy and autophagy in diseases [J]. Life Sci, 2023, 334: 122215.
16
Gao C, Kwong CHT, Wang Q, et al. Conjugation of macrophage-mimetic microalgae and liposome for antitumor sonodynamic immunotherapy via hypoxia alleviation and autophagy inhibition [J]. ACS Nano, 2023, 17(4): 4034-4049.
17
Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity [J]. Front Immunol, 2020, 11: 583084.
18
Cao Y, Qiao B, Chen Q, et al. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy [J]. Acta Biomater, 2023, 160: 239-251.
19
Chen S, Wang J, Liao H, et al. M1 macrophage-derived sonoresponsive nanoparticles for sonodynamic anticancer therapy [J]. Int J Nanomedicine, 2022, 17: 4725-4741.
20
Ning S, Dai X, Tang W, et al. Cancer cell membrane-coated C-TiO(2) hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy [J]. Acta Biomater, 2022, 152: 562-574.
21
Lu Z, Bai S, Jiang Y, et al. Amplifying dendritic cell activation by bioinspired nanometal organic frameworks for synergistic sonoimmunotherapy [J]. Small, 2022, 18(44): e2203952.
22
Cai J, Hu G, Hu L, et al. A CaCO(3)-based nanoplatform with sonodynamic and tumor microenvironment activated for combined in vitro cancer therapy [J]. Transl Oncol, 2023, 38: 101771.
23
Li Y, Liu Y, Xu J, et al. Macrophage-cancer hybrid membrane-camouflaged nanoplatforms for HIF-1alpha gene silencing-enhanced sonodynamic therapy of glioblastoma [J]. ACS Appl Mater Interfaces, 2023, 15(26): 31150-31158.
24
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
25
Liu Y, Bai L, Guo K, et al. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy [J]. Theranostics, 2019, 9(18): 5261-5281.
26
Li Y, Huang C, Xu Y. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload [J]. Front Bioeng Biotechnol, 2022, 10: 1069676.
27
Krishnan N, Peng FX, Mohapatra A, et al. Genetically engineered cellular nanoparticles for biomedical applications [J]. Biomaterials, 2023, 296: 122065.
28
Schmaus A, Klusmeier S, Rothley M, et al. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis [J]. Br J Cancer, 2014, 111(3): 559-567.
29
Xu S, Shi X, Ren E, et al. Genetically engineered nanohyaluronidase vesicles: a smart sonotheranostic platform for enhancing cargo penetration of solid tumors [J/OL]. Adv Funct Mater, 2022, 32(22). doi/10.1002/adfm.202112989.

URL    
No related articles found!
阅读次数
全文


摘要