1 |
陶琳, 吴长君. 声动力疗法在癌症综合治疗中的应用现状 [J/OL]. 中华医学超声杂志(电子版), 2022, 19(11): 1157-1159.
URL
|
2 |
Mchale AP, Callan JF, Nomikou N, et al. Sonodynamic therapy: concept, mechanism and application to cancer treatment [J]. Adv Exp Med Biol, 2016, 880: 429-450.
|
3 |
Li C, Yang XQ, An J, et al. Red blood cell membrane-enveloped O(2) self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy [J]. Theranostics, 2020, 10(2): 867-879.
|
4 |
Kinoshita R, Ishima Y, Chuang VTG, et al. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer [J]. Biomaterials, 2017, 140: 162-169.
|
5 |
Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance [J]. J Cell Biol, 2018, 217(7): 2291-2298.
|
6 |
Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells [J]. Science, 2000, 288(5473): 2051-2054.
|
7 |
Wang D, Yao Y, Xiao Y, et al. Ultrasound responsive erythrocyte membrane-derived hybrid nanovesicles with controlled drug release for tumor therapy [J]. Nanoscale, 2021, 13(22): 9945-9951.
|
8 |
Zhou A, Fang T, Chen K, et al. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer [J]. Small, 2022, 18(12): e2106568.
|
9 |
Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase [J]. Biochim Biophys Acta, 2003, 1620(1-3): 211-217.
|
10 |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 2010, 48(12): 909-930.
|
11 |
Bao Y, Chen J, Qiu H, et al. Erythrocyte membrane-camouflaged PCN-224 nanocarriers integrated with platinum nanoparticles and glucose oxidase for enhanced tumor sonodynamic therapy and synergistic starvation therapy [J]. ACS Appl Mater Interfaces, 2021, 13(21): 24532-24542.
|
12 |
Li Q, Lin B, Li Y, et al. Erythrocyte-camouflaged mesoporous titanium dioxide nanoplatform for an ultrasound-mediated sequential therapies of breast cancer [J]. Int J Nanomedicine, 2021, 16: 3875-3887.
|
13 |
Hu Q, Sun W, Qian C, et al. Anticancer platelet-mimicking nanovehicles [J]. Adv Mater, 2015, 27(44): 7043-7050.
|
14 |
Wang M, Xu H, Li T, et al. Sonodynamic therapy of glioblastoma mediated by platelets with ultrasound-triggered drug release [J]. Drug Deliv, 2023, 30(1): 2219429.
|
15 |
Chen F, Xue Q, He N, et al. The association and application of sonodynamic therapy and autophagy in diseases [J]. Life Sci, 2023, 334: 122215.
|
16 |
Gao C, Kwong CHT, Wang Q, et al. Conjugation of macrophage-mimetic microalgae and liposome for antitumor sonodynamic immunotherapy via hypoxia alleviation and autophagy inhibition [J]. ACS Nano, 2023, 17(4): 4034-4049.
|
17 |
Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity [J]. Front Immunol, 2020, 11: 583084.
|
18 |
Cao Y, Qiao B, Chen Q, et al. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy [J]. Acta Biomater, 2023, 160: 239-251.
|
19 |
Chen S, Wang J, Liao H, et al. M1 macrophage-derived sonoresponsive nanoparticles for sonodynamic anticancer therapy [J]. Int J Nanomedicine, 2022, 17: 4725-4741.
|
20 |
Ning S, Dai X, Tang W, et al. Cancer cell membrane-coated C-TiO(2) hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy [J]. Acta Biomater, 2022, 152: 562-574.
|
21 |
Lu Z, Bai S, Jiang Y, et al. Amplifying dendritic cell activation by bioinspired nanometal organic frameworks for synergistic sonoimmunotherapy [J]. Small, 2022, 18(44): e2203952.
|
22 |
Cai J, Hu G, Hu L, et al. A CaCO(3)-based nanoplatform with sonodynamic and tumor microenvironment activated for combined in vitro cancer therapy [J]. Transl Oncol, 2023, 38: 101771.
|
23 |
Li Y, Liu Y, Xu J, et al. Macrophage-cancer hybrid membrane-camouflaged nanoplatforms for HIF-1alpha gene silencing-enhanced sonodynamic therapy of glioblastoma [J]. ACS Appl Mater Interfaces, 2023, 15(26): 31150-31158.
|
24 |
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
|
25 |
Liu Y, Bai L, Guo K, et al. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy [J]. Theranostics, 2019, 9(18): 5261-5281.
|
26 |
Li Y, Huang C, Xu Y. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload [J]. Front Bioeng Biotechnol, 2022, 10: 1069676.
|
27 |
Krishnan N, Peng FX, Mohapatra A, et al. Genetically engineered cellular nanoparticles for biomedical applications [J]. Biomaterials, 2023, 296: 122065.
|
28 |
Schmaus A, Klusmeier S, Rothley M, et al. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis [J]. Br J Cancer, 2014, 111(3): 559-567.
|
29 |
Xu S, Shi X, Ren E, et al. Genetically engineered nanohyaluronidase vesicles: a smart sonotheranostic platform for enhancing cargo penetration of solid tumors [J/OL]. Adv Funct Mater, 2022, 32(22). doi/10.1002/adfm.202112989.
URL
|