切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (07) : 741 -744. doi: 10.3877/cma.j.issn.1672-6448.2024.07.017

综述

人工智能在胎儿超声心动图中的应用与进展
孙利华1, 马明明1, 陈冉1, 朱江2, 赵博文1,()   
  1. 1. 310016 杭州,浙江大学医学院附属邵逸夫医院超声科 浙江省胎儿心脏超声诊断技术指导中心
    2. 31000 杭州,浙江省妇科重大疾病精准诊治研究重点实验室 浙江大学医学院附属妇产科医院超声科
  • 收稿日期:2023-12-10 出版日期:2024-07-01
  • 通信作者: 赵博文
  • 基金资助:
    国家自然科学基金(81974470); 浙江省自然科学基金(LY18H180001)

Progress in application of artificial intelligence in fetal echocardiography

Lihua Sun, Mingming Ma, Ran Chen   

  • Received:2023-12-10 Published:2024-07-01
引用本文:

孙利华, 马明明, 陈冉, 朱江, 赵博文. 人工智能在胎儿超声心动图中的应用与进展[J]. 中华医学超声杂志(电子版), 2024, 21(07): 741-744.

Lihua Sun, Mingming Ma, Ran Chen. Progress in application of artificial intelligence in fetal echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(07): 741-744.

先天性心脏病(congenital heart disease,CHD)在所有新生儿中占1%,是最常见的出生缺陷,也是新生儿先天性出生缺陷死亡的主要原因[1],准确的产前诊断可显著提高CHD的围手术期治疗效果和手术成功率,降低新生儿死亡率。胎儿超声心动图由于具有无创、无辐射、实时、动态等优势,已成为胎儿CHD主要的筛查和诊断工具[2]。在过去的20年中,在产前诊断CHD的准确性方面取得了重要的研究进展,既往多项研究报道了胎儿超声心动图可以准确检出CHD,准确率高达85%[3,4]。然而,由于部分地区缺乏专业的胎儿心脏超声筛查人员及产前筛查条件不完善,造成产前CHD的检出率存在明显地区差异[5]。Quartermain等[6]进行了一项大型研究,研究表明一些社区产前检出CHD的概率仅为34%。另一项国际研究表明,一些国家的CHD产前检出率低至14%[6,7,8]。近年来,人工智能(artificial intelligence,AI)在胎儿心脏超声领域得到迅速发展,通过AI可以自动化、标准化显示胎儿心脏各个诊断切面,并能准确地做出诊断,有望减少对操作者经验的依赖性,从而改善不同地域之间的CHD检出率差异[9]。在本综述中,笔者将简要介绍AI的概念并讨论AI在胎儿超声心动图方面的应用情况及未来发展方向。

1
Reller MD, Strickland MJ, Riehle-Colarusso T, et al. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005 [J]. J Pediatr, 2008, 153(6): 807-813.
2
Kanwal A, Sheikh AM, Saher T. Determining the factors causing delayed referral for fetal echocardiography at a tertiary care hospital [J]. J Saudi Heart Assoc, 2018, 30(3): 205-210.
3
Randall P, Brealey S, Hahn S, et al. Accuracy of fetal echocardiography in the routine detection of congenital heart disease among unselected and low risk populations:a systematic review [J]. BJOG. 2005, 112(1): 24-30.
4
Li Y, Hua Y, Fang J, et al. Performance of different scan protocols of fetal echocardiography in the diagnosis of fetal congenital heart disease: a systematic review and meta-analysis [J]. PLoS One, 2013, 8(6): e65484.
5
Zuhlke L, Lawrenson J, Comitis G, et al. Congenital heart disease in low- and lower-middle-income countries: current status and new opportunities [J]. Curr Cardiol Rep, 2019, 21(12): 163.
6
Quartermain MD, Pasquali SK, Hill KD, et al. Variation in prenatal diagnosis of congenital heart disease in infants [J]. Pediatrics, 2015, 136(2): e378-e385.
7
Bakker MK, Bergman JEH, Krikov S, et al. Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study [J]. BMJ Open, 2019, 9(7): e028139.
8
Oster ME, Lee KA, Honein MA, et al. Temporal trends in survival among infants with critical congenital heart defects [J]. Pediatrics, 2013, 131(5): e1502-e1508.
9
Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, et al. Machine learning in fetal cardiology: what to expect [J]. Fetal Diagn Ther, 2020, 47(5): 363-372.
10
Davis A, Billick K, Horton K, et al. Artificial intelligence and echocardiography: a primer for cardiac sonographers [J]. J Am Soc Echocardiogr, 2020, 33(9): 1061-1066.
11
陈凯玲, 王文平. 基于超声影像的人工智能在肝脏局灶性病变中的研究进展 [J]. 中华超声影像学杂志, 2021, 30(9): 824-828.
12
于腾飞, 何文, 甘从贵, 等. 基于深度学习超声在乳腺肿块四分类中的应用价值 [J]. 中华超声影像学杂志, 2020, 29(4): 337-342.
13
朱业, 谢雨霁, 谢明星, 等. 人工智能在心血管超声的应用 [J]. 中华超声影像学杂志, 2021, 30(4): 356-361.
14
Veronese P, Bogana G, Cerutti A, et al. A prospective study of the use of fetal intelligent navigation echocardiography (FINE) to obtain standard fetal echocardiography views [J]. Fetal Diagn Ther, 2017, 41(2): 89-99.
15
Garcia M, Yeo L, Romero R, et al. Prospective evaluation of the fetal heart using fetal intelligent navigation echocardiography (FINE) [J]. Ultrasound Obstet Gynecol, 2016, 47(4): 450-459.
16
Ma M, Li Y, Chen R, et al. Diagnostic performance of fetal intelligent navigation echocardiography (FINE) in fetuses with double-outlet right ventricle (DORV) [J]. Int J Cardiovasc Imaging, 2020, 36(11): 2165-2172.
17
Huang C, Zhao BW, Chen R, et al. Is fetal intelligent navigation echocardiography helpful in screening for d-transposition of the great arteries? [J]. J Ultrasound Med, 2020, 39(4): 775-784.
18
汪贤臣, 赵博文, 李世岩, 等. 胎儿心脏超声智能导航技术在法洛四联症中的诊断效能[J]. 中国医学影像学杂志, 2021, 29(6): 603-613.
19
Yeo L, Luewan S, Romero R, et al. Fetal intelligent navigation echocardiography (FINE) detects 98% of congenital heart disease [J]. J Ultrasound Med, 2018, 37(11): 2577-2593.
20
Baumgartner CF, Kamnitsas K, Matthew J, et al. SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound [J]. IEEE Trans Med Imaging, 2017, 36(11): 2204-2215.
21
Arnaout R, Curran L, Zhao Y, et al. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J]. Nat Med, 2021, 27(5): 882-891.
22
Abdi AH, Luong C, Tsang T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: Feasibility on the apical four chamber view [J]. IEEE Trans Med Imag, 2017, 36(6): 1221-1230.
23
Abdi AH, Luong C, Tsang T, et al. Quality assessment of echocardiographic cine using recurrent neural networks: feasibility on five standard view planes [C]//International Conference on Medical Image Computing & Computer-assisted Intervention, 2017: 302-310.
24
Dong J, Liu S, Liao Y, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J]. IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
25
Sulas E, Ortu E, Raffo L, et al. Automatic recognition of complete atrioventricular activity in fetal pulsed-wave Doppler signals [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 917-920.
26
Yu L, Guo Y, Wang Y, et al. Determination of fetal left ventricular volume based on two-dimensional echocardiography [J]. J Healthc Eng, 2017, 2017: 4797315.
27
Bridge CP, Ioannou C, Noble JA, et al. Automated annotation and quantitative description of ultrasound videos of the fetal heart [J]. Med Image Anal, 2017, 36: 147-161.
28
Cai Q, Chen R, Li L, et al. The application of knowledge distillation toward fine-grained segmentation for three-vessel view of fetal heart ultrasound images [J]. Comput Intell Neurosci, 2022: 1765550.
29
Xu L, Liu M, Shen Z, et al. DW-Net: A cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography [J]. Comput Med Imaging Graph, 2020, 80: 101690.
30
Komatsu M, Sakai A, Komatsu R, et al. Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning [J]. Appl Sci, 2021,11(1): 371.
31
周小雪, 张莹莹, 张烨, 等. 人工智能技术在胎儿超声心动图四腔心切面筛查中的应用[J]. 中华超声影像学杂志, 2020, 29(8): 668-672.
32
Gong Y, Zhang Y, Zhu H, et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning [J]. IEEE Trans Med Imaging, 2020, 39(4): 1206-1222.
33
Nurmaini S, Rachmatullah MN, Sapitri AI, et al. Accurate detection of septal defects with fetal ultrasonography images using deep learning-based multiclass instance segmentation [J]. IEEE Access, 2020, 8: 196160-196174.
34
Anda U, Andreea-Sorina M, Laurentiu PC, et al. Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE)—A study protocol for developing an automated intelligent decision support system for early fetal fechocardiography [J]. BMC Pregnancy Childbirth, 2023, 23(1): 20.
35
Diller GP, Vahle J, Radke R, et al. Utility of deep learning networks for the generation of artificial cardiacmagnetic resonance images in congenital heart disease [J]. BMCMed Imaging, 2020, 20(1): 113.
No related articles found!
阅读次数
全文


摘要