切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (06) : 541 -546. doi: 10.3877/cma.j.issn.1672-6448.2025.06.007

肌骨超声影像学

基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值
傅小芳1,2, 杨青翰3, 孙昌琴1, 豆梦杰1, 胡峻溥1, 孙灏1, 吕发勤1,()   
  1. 1100039 北京,锦州医科大学解放军总医院第三医学中心研究生培养基地
    2200235 上海市第八人民医院超声医学科
    3211189 南京,东南大学生物科学与医学工程学院
  • 收稿日期:2025-02-22 出版日期:2025-06-01
  • 通信作者: 吕发勤
  • 基金资助:
    国家重点研发计划(2022YFB4703500); 国家自然科学基金面上项目(62371121)

Clinical value of a YOLO 11-based ultrasound detection model for limb long bone fracture ends

Xiaofang Fu1,2, Qinghan Yang3, Changqin Sun1, Mengjie Dou1, Junpu Hu1, Hao Sun1, Faqin Lyu1,()   

  1. 1Postgraduate Training Base, Third Medical Center, Chinese PLA General Hospital, Jinzhou Medical University, Beijing 100039, China
    2Department of Ultrasound, Shanghai Eighth People's Hospital, Shanghai 200235, China
    3School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 211189, China
  • Received:2025-02-22 Published:2025-06-01
  • Corresponding author: Faqin Lyu
引用本文:

傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.

Xiaofang Fu, Qinghan Yang, Changqin Sun, Mengjie Dou, Junpu Hu, Hao Sun, Faqin Lyu. Clinical value of a YOLO 11-based ultrasound detection model for limb long bone fracture ends[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(06): 541-546.

目的

探讨基于YOLO 11的肢体长骨骨折断端超声检测模型的临床应用价值。

方法

前瞻性纳入2023年7月至2025年1月上海市第八人民医院206例长骨骨折患者,采集骨折断端的超声长轴切面图像,经Labelme软件标注,建立训练数据集(461张图像),按7:1:2随机划分为训练集、验证集和测试集。训练YOLO 11模型,通过精确率、召回率、F1分数、交并比>50%时的平均精度均值(mAP@50)评估模型性能,并与YOLOv8模型对比。另纳入40例受试者(骨折组与正常组各20例),采集骨折断端及正常骨超声图像构建独立临床验证集,通过敏感度、特异度、阴性预测值(NPV)、阳性预测值(PPV)综合评估模型的临床诊断效能,并分析单帧平均推理时间。

结果

测试集数据显示,YOLO 11模型的精确率、召回率、F1分数、mAP@50分别为87.9%、85.3%、86.6%、89.2%,优于YOLOv8的82.9%、74.3%、78.4%、81.9%。临床验证集中,YOLO 11的敏感度(92.7% vs 83.9%)及NPV(91.2% vs 82.8%)优于YOLOv8,特异度(95.4% vs 98.0%)和PPV(96.2% vs 98.2%)略有下降,单帧平均推理时间较YOLOv8略增加(42.5 ms vs 36.1 ms)。

结论

YOLO 11模型在肢体长骨骨折断端检测中可高效识别骨折断端,为院前快速筛查和临床诊断提供了有效的辅助工具。

Objective

To evaluate the clinical value of a YOLO 11-based ultrasound detection model for identifying fracture ends in limb long bones.

Methods

A total of 206 patients with long bone fractures in Shanghai Eighth People's Hospital from July 2023 to January 2025 were prospectively included. Ultrasonic long-axis sectional images of the fracture ends were collected. The images were labeled using the Labelme software to establish a training dataset (461 images), which was randomly divided into a training set, a validation set, and a test set at a ratio of 7:1:2. The YOLO 11 model was trained. The performance of the model was evaluated by precision, recall, F1 score, and the mean average precision when the intersection over union was greater than 50% (mAP@50), and it was compared with the YOLOv8 model. In addition, 40 subjects (20 with fractures and 20 normal controls) were newly included to construct an independent clinical validation set. Ultrasonic long-axis sectional images of the fracture ends and normal bones were collected. The clinical diagnostic efficacy was comprehensively evaluated by sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV), and the average inference time per frame was analyzed.

Results

According to the data of the test set, the indicators of the YOLO 11 model were superior to those of the YOLOv8 model. Its precision, recall, F1-score, and mAP@50 were 87.9%, 85.3%, 86.6%, and 89.2%, respectively. In the clinical validation set, the sensitivity (92.7% vs 83.9%) and NPV (91.2% vs 82.8%) of YOLO 11 were better than those of YOLOv8, while the specificity (95.4% vs 98.0%) and PPV (96.2% vs 98.2%) slightly decreased, and the average inference time per frame shows a marginal increase over YOLOv8 (42.5 ms vs 36.1 ms).

Conclusion

The YOLO 11 model can efficiently identify the fracture ends of long bones in the limbs, providing an effective auxiliary tool for rapid pre-hospital screening and clinical diagnosis.

图1 骨折超声影像数据的采集及断端标注。图a为纵切面超声图像采集操作示意图,超声探头置于肢体骨折处,垂直骨表面;图b为超声长轴切面图像,箭头所示为胫骨骨折断端;图c为使用Labelme软件进行肢体长骨骨折断端超声图像的矩形框标注,矩形框完整地包绕断端
图2 YOLO 11模型训练与验证过程中各指标随训练轮次增加的变化趋势曲线图。所有图横坐标为训练轮次(次)。图a~c、f~h分别表示在训练集和验证集中损失函数随训练轮次的变化趋势曲线图,纵坐标分别为box损失值、cls损失值和dfl损失值;图d,e、i,j分别为验证集性能评估指标精确率、召回率、mAP@50、mAP@50-95随训练轮次的变化趋势曲线图注:mAP为平均精度均值;box损失为框损失;cls损失为分类损失;dfl损失为自由形变损失;蓝色实线表示原始模型输出结果;橙色虚线为其经平滑处理后的趋势曲线
图3 YOLO 11模型检测骨折的精确率-召回率曲线图与F1分数-置信度曲线图。图a为精确率-召回率曲线图,其所有类别(骨折)在mAP@50的值为0.892;图b为F1分数-置信度曲线图,其所有类别(骨折)的最大F1分数为0.86,对应置信度为0.511
图4 基于YOLO 11的骨折断端超声检测模型对典型和非典型骨折的超声检测图像。图a~d为模型对典型骨折断端的超声检测图像,检测框精准检出骨折断端;图e~h为模型检出微骨折(断端分离<3 mm)的超声图像;图i~l分别为模型漏诊碎片样断端、骨皮质无明显分离、微小骨碎片及骨皮质局部隆起4种不典型骨折断端的超声图像
1
Snelling PJ, Jones P, Bade D, et al. Ultrasonography or radiography for suspected pediatric distal forearm fractures[J]. N Engl J Med, 2023, 388(22): 2049-2057.
2
Du MJ, Lin YH, Chen WT, et al. Advances in the application of ultrasound for fracture diagnosis and treatment[J]. Eur Rev Med Pharmacol Sci, 2022, 26(21): 7949-7954.
3
吕发勤, 黄钰清, 刘义灏, 等. 超声技术在特殊环境的应用及其前景[J/CD]. 中华医学超声杂志(电子版), 2019, 16(12): 885-888.
4
Stucchi R, Weinstein ES, Ripoll-Gallardo A, et al. Impact of point-of-care ultrasound on secondary triage: a pilot study[J]. Disaster Med Public Health Prep, 2022, 17: e194.
5
Moritz JD. Sonographic fracture diagnosis in children and adolescents[J]. Rofo, 2023, 195(9): 790-796.
6
Bae J, Yu S, Oh J, et al. External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray[J]. J Digit Imaging, 2021, 34(5): 1099-1109.
7
Inoue T, Maki S, Furuya T, et al. Automated fracture screening using an object detection algorithm on whole-body trauma computed tomography[J]. Sci Rep, 2022, 12(1): 16549.
8
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3: 118.
9
Tulbure AA, Tulbure AA, Dulf EH. A review on modern defect detection models using DCNNs - deep convolutional neural networks[J]. J Adv Res, 2021, 35: 33-48.
10
Wu X, Tan G, Zhu N, et al. CacheTrack-YOLO: Real-time detection and tracking for thyroid nodules and surrounding tissues in ultrasound videos[J]. IEEE J Biomed Health Inform, 2021, 25(10): 3812-3823.
11
Li W, Ye X, Chen X, et al. A deep learning-based method for the detection and segmentation of breast masses in ultrasound images[J]. Phys Med Biol, 2024, 69(15).
12
Zhang H, Zhao F. Deep learning-based carotid plaque ultrasound image detection and classification study[J]. Rev Cardiovasc Med, 2024, 25(12): 454.
13
刘韩, 王胰, 舒庆兰, 等. 基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(2): 121-127.
14
Ziegler P, Bahrs C, Konrads C, et al. Ankle fractures of the geriatric patient: A narrative review[J]. EFORT Open Rev, 2023, 8(1): 1-10.
15
Aprato A, Bechis M, Buzzone M, et al. No rest for elderly femur fracture patients: Early surgery and early ambulation decrease mortality[J]. J Orthop Traumatol, 2020, 21(1): 12.
16
Einstein AJ. Medical imaging: the radiation issue[J]. Nat Rev Cardiol, 2009, 6(6): 436-438.
17
Alzen G, Benz-Bohm G. Radiation protection in pediatric radiology[J]. Dtsch Arztebl Int, 2011, 108(24): 407-414.
18
Delniotis I, Bontinis V, Ktenidis K, et al. Diagnostic accuracy of ultrasound versus X-ray for distal forearm fractures in children and adolescents: a systematic review and meta-analysis[J]. Eur J Trauma Emerg Surg, 2024, 50(6): 2649-2662.
19
Mercer CB, Ball M, Cash RE, et al. Ultrasound use in the prehospital setting for trauma: a systematic review[J]. Prehosp Emerg Care, 2021, 25(4): 566-582.
20
Sazak H, Kotan M. Automated blood cell detection and classification in microscopic images using YOLOv11 and optimized weights[J]. Diagnostics (Basel), 2024, 15(1): 22.
21
Williamson D. Ultrasound imaging of forearm fractures in children: a viable alternative?[J]. 2000, 17(1): 22-24.
22
Jørgensen H, Jensen CH, Dirks J. Does prehospital ultrasound improve treatment of the trauma patient? A systematic review[J]. Eur J Emerg Med, 2010, 17(5): 249-253.
[1] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[2] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[3] 田湘英, 缪华章, 徐玲, 涂艳萍, 张婕, 相光华, 赵贤哲, 尚宁. 卵巢颗粒细胞瘤与卵泡膜-纤维瘤组的超声特征及临床病理分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 311-320.
[4] 杨宏宇, 李克婷, 孙传青, 任敏. 超声特征联合卵巢恶性肿瘤风险算法预测上皮性卵巢癌亚型的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 321-327.
[5] 廖佳音, 文华轩, 薛淑贞, 黄慧, 魏英妮, 陈亚岩. 胎儿眼睑及睑裂的产前超声检查[J/OL]. 中华医学超声杂志(电子版), 2025, 22(03): 191-196.
[6] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[7] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[8] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[9] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[10] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[11] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[12] 周飞虎, 毛智. 智慧化重症医学科建设:机遇与挑战[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 143-147.
[13] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
[14] 庞心念, 蒋添, 徐贝贝, 杨天瑶, 李伟, 陈禄凑. 超声特征联合临床病理早期预测乳腺癌新辅助化疗疗效的应用价值[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 89-96.
[15] 许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?