切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (10) : 969 -975. doi: 10.3877/cma.j.issn.1672-6448.2025.10.010

浅表器官超声影像学

多模态超声联合免疫炎症指标预测乳腺癌腋窝淋巴结转移的价值
潘辰蕊, 杨冰洁, 沈会明, 王颖彦, 韩佳豪, 李嘉()   
  1. 210000 南京,东南大学附属中大医院超声医学科
  • 收稿日期:2025-05-22 出版日期:2025-10-01
  • 通信作者: 李嘉

Value of multimodal ultrasound combined with immune-inflammatory markers in predicting axillary lymph node metastasis of breast cancer

Chenrui Pan, Bingjie Yang, Huiming Shen, Yingyan Wang, Jiahao Han, Jia Li()   

  1. Department of Ultrasound, Zhongda Hospital, Southeast University, Nanjing 210000, China
  • Received:2025-05-22 Published:2025-10-01
  • Corresponding author: Jia Li
引用本文:

潘辰蕊, 杨冰洁, 沈会明, 王颖彦, 韩佳豪, 李嘉. 多模态超声联合免疫炎症指标预测乳腺癌腋窝淋巴结转移的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 969-975.

Chenrui Pan, Bingjie Yang, Huiming Shen, Yingyan Wang, Jiahao Han, Jia Li. Value of multimodal ultrasound combined with immune-inflammatory markers in predicting axillary lymph node metastasis of breast cancer[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(10): 969-975.

目的

探讨多模态超声联合免疫炎性指标在预测乳腺癌患者腋窝淋巴结转移(ALNM)中的价值。

方法

回顾性分析2023年6月至2024年12月于东南大学附属中大医院经病理证实的乳腺癌患者的多模态超声、免疫炎症指标及临床资料。依据腋窝淋巴结(ALN)的病理结果将患者分为转移(ALNM)组和非转移(NALNM)组。比较ALNM组与NALNM组多模态超声特征及免疫炎症指标的差异,通过单因素及多因素Logistic回归分析确定乳腺癌患者发生ALNM的危险因素并绘制 ROC曲线评估各项多模态超声特征、免疫炎性指标及联合诊断的预测效能。

结果

本研究最终纳入166例乳腺癌患者,其中ALNM组58例。多因素Logistic回归分析结果显示,肿瘤最大径(OR=2.265;95%CI:1.478,3.471)、后方回声衰减(OR=4.430;95%CI:1.683,11.658)、超声造影增强程度(OR=9.100;95%CI:1.420,76.160)、增强后范围增大(OR=4.138;95%CI:1.127,15.190)、全身免疫炎症指数(SII)(OR=1.003;95%CI:1.000,1.005)均为乳腺癌患者ALNM的独立预测因素(P均<0.05)。多模态超声特征联合免疫炎症指标的ROC曲线下面积为0.821(95%CI:0.754,0.876),准确性为79.52%,敏感度为56.90%,特异度为91.67%。Delong检验显示联合指标的诊断价值显著优于单独特征(P<0.001)。

结论

联合多模态超声和免疫炎症指标对于早期预测乳腺癌患者ALNM有较高的临床应用价值。

Objective

To evaluate the value of multimodal ultrasound features combined with immune-inflammatory markers in predicting axillary lymph node metastasis (ALNM) in breast cancer patients.

Methods

Data from patients with pathologically proven breast cancer between June 2023 to December 2024 at the Zhongda Hospital, Southeast University were reviewed. The multimodal ultrasound features, immune-inflammatory markers, and clinical data of the patients were retrospectively analyzed. The patients were divided into an ALNM group and a non-ALNM (NALNM) group based on axillary lymph node pathological results. The differences in multimodal ultrasound features and immune-inflammatory markers were compared between the ALNM and NALNM groups. The risk factors for ALNM in breast cancer patients were determined using univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive efficacy of multimodal ultrasound features and immunoinflammatory markers, alone and in combination, for ALNM.

Results

This study ultimately included 166 patients with breast cancer, of whom 58 were assigned to the ALNM group. Multivariate logistic regression analysis revealed that maximum lesion diameter (odds ratio [OR]=2.265; 95% confidence interval [CI]: 1.478, 3.471), posterior echo attenuation (OR=4.430; 95%CI: 1.683, 11.658), enhancement degree (OR=9.100; 95%CI: 1.420, 76.160), enlarged enhancement range (OR=4.138; 95%CI: 1.127, 15.190), and systemic immune inflammation index (OR=1.003; 95%CI: 1.000, 1.005) were independent factors predicting ALNM (P<0.05). The area under the ROC curve of multimodal ultrasound features combined with immune-inflammatory markers was 0.821 (95%CI: 0.754, 0.876), yielding an accuracy of 79.52%, sensitivity of 56.90%, and specificity of 91.67%. The DeLong test demonstrated that the combined diagnostic approach significantly outperformed individual features in diagnostic value (P<0.001).

Conclusion

The combination of multimodal ultrasound features and immune-inflammatory markers has high clinical value for early prediction of ALNM in breast cancer.

图1 研究对象纳入流程图 注:SLNB为前哨淋巴结活检;ALND为腋窝淋巴结清扫术;ALN为腋窝淋巴结
表1 ALNM组与NALNM组多模态超声特征及免疫炎症指标比较
参数 ALNM组(n=58) NALNM组(n=108) 统计值 P
年龄(岁,
±s
57.78±11.43 55.94±11.07 t=1.005 0.316
绝经状态[例(%)] χ2=0.007 0.934
绝经 41(70.7) 77(71.3)
未绝经 17(29.3) 31(28.7)
肿瘤家族史[例(%)] χ2=0.780 0.377
52(89.7) 101(93.5)
6(10.3) 7(6.5)
ER[例(%)] χ2=1.311 0.252
阳性 48(82.8) 81(75.0)
阴性 10(17.2) 27(25.0)
PR[例(%)] χ2=0.264 0.607
阳性 43(74.1) 76(70.4)
阴性 15(25.9) 32(29.6)
HER-2[例(%)] χ2=0.566 0.452
阳性 13(22.4) 30(27.8)
阴性 45(77.6) 78(72.2)
病灶最大径[cm,MQ1Q3)] 2.26(1.79,3.11) 1.71(1.20,2.39) U=3.024 <0.001
病灶位置[例(%)] χ2=0.208 0.649
29(50.0) 58(53.7)
29(50.0) 50(46.3)
形态[例(%)] - 0.080
规则 1(1.7) 9(8.3)
不规则 57(98.3) 99(91.7)
方位[例(%)] χ2=0.000 0.986
平行位 50(86.2) 93(86.1)
非平行位 8(13.8) 15(13.9)
内部回声[例(%)] - 0.229
低回声 57(98.3) 102(94.4)
混合回声 1(1.7) 6(5.6)
边界[例(%)] - 0.048
光整 2(3.4) 14(13.0)
模糊 56(96.6) 94(87.0)
钙化[例(%)] χ2=1.594 0.207
29(50.0) 43(39.8)
29(50.0) 65(60.2)
后方回声衰减[例(%)] χ2=12.760 <0.001
18(31.0) 10(9.3)
40(69.0) 98(90.7)
Alder分级[例(%)] χ2=7.396 0.007
0/Ⅰ级 8(13.8) 36(33.3)
Ⅱ/Ⅲ级 50(86.2) 72(66.7)
弹性评分[例(%)] χ2=7.760 0.005
1~3分 24(41.4) 69(63.9)
4~5分 34(58.6) 39(36.1)
增强后范围增大[例(%)] χ2=10.286 0.001
53(91.4) 75(69.4)
5(8.6) 33(30.6)
灌注缺损[例(%)] χ2=0.027 0.869
7(12.1) 14(13.0)
51(87.9) 94(87.0)
增强程度[例(%)] - <0.001
低/等增强 1(1.7) 24(22.2)
高增强 57(98.3) 84(77.8)
增强后边界[例(%)] - 0.673
清晰 1(1.7) 3(2.8)
模糊 57(98.3) 105(97.2)
穿支血管[例(%)] χ2=5.197 0.023
57(98.3) 95(88.0)
1(1.7) 13(12.0)
免疫炎症指标
SII [MQ1Q3)] 388.15(306.31,571.14) 346.28(257.70,439.22) U=2.544 0.011
SIRI(
±s
0.82±0.64 0.68±0.42 t=1.676 0.096
PIV [MQ1Q3)] 137.06(104.62,229.18) 125.60(71.12,181.00) U=1.978 0.048
表2 ALNM的多因素Logistic回归分析结果
图2 各项超声特征、免疫炎症指标及联合诊断预测腋窝淋巴结转移的ROC曲线 注:SII为全身免疫炎症指数
1
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
2
Chen X, Yang Z, Huang R, et al. Development and validation of a point-based scoring system for predicting axillary lymph node metastasis and disease outcome in breast cancer using clinicopathological and multiparametric MRI features[J]. Cancer Imaging, 2023, 23(1): 54.
3
Jiang M, Li CL, Luo XM, et al. Radiomics model based on shear-wave elastography in the assessment of axillary lymph node status in early-stage breast cancer[J]. Eur Radiol, 2021, 32(4): 2313-2325.
4
Graziano V, Grassadonia A, Iezzi L, et al. Combination of peripheral neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio is predictive of pathological complete response after neoadjuvant chemotherapy in breast cancer patients[J]. Breast, 2019, 44: 33-38.
5
Zhang Y, Wu J, Chen W, Liang X. Pretreatment System Inflammation Response Index (SIRI) is a valuable marker for evaluating the efficacy of neoadjuvant therapy in breast cancer patients[J]. Int J Gen Med, 2024, 17: 4359-4368.
6
Song Y, Liu J, Jin C, et al. Value of contrast-enhanced ultrasound combined with immune-inflammatory markers in predicting axillary lymph node metastasis of breast cancer[J]. Acad Radiol, 2024, 31(9): 3535-3545.
7
高兰, 詹韵韵, 王佳佳, 等. 多模态超声联合炎性细胞比值预测乳腺癌新辅助化疗疗效的应用价值[J]. 中华超声影像学杂志, 2024, 33(11): 983-991.
8
高曼丽, 蔡芹芹, 包迪, 等. 乳腺癌二维超声、彩色多普勒血流显像、剪切波弹性成像、造影参数联合评估与病理对照[J]. 分子影像学杂志, 2021, 44(6): 1002-1006.
9
Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis[J]. Radiology, 2006, 239(2): 341-350.
10
Gradishar WJ, Anderson BO, Balassanian R, et al. NCCN guidelines insights: breast cancer, version 1.2017[J]. J Natl Compr Canc Netw, 2017, 15(4): 433-451.
11
Wang H, Yu J, Shen W, et al. The ratio of lymphocyte/red blood cells and platelets/lymphocytes are predictive biomarkers for lymph node metastasis in patients with breast cancer[J]. Cancer Biomark, 2023, 38(4): 595-602.
12
Morkavuk ŞB, Kocaöz S, Korukluoğlu B. Diagnostic value of platelet/lymphocyte ratio (PLR) for predicting sentinel axillary lymph node positivity in early-stage breast cancer compared with ultrasonography[J]. Int J Clin Pract, 2021, 75(12): e14939.
13
Du LW, Liu HL, Gong HY, et al. Adding contrast-enhanced ultrasound markers to conventional axillary ultrasound improves specificity for predicting axillary lymph node metastasis in patients with breast cancer[J]. Br J Radiol, 2021, 94(1118): 20200874.
14
张小燕, 沈皓. 高频彩超与超声弹性成像联合诊断早期浸润性乳腺癌腋窝淋巴结转移的效果[J]. 交通医学, 2024, 38(2): 155-157.
15
Liu D, Lan Y, Zhang L, et al. Nomograms for predicting axillary lymph node status reconciled with preoperative breast ultrasound images[J]. Front Oncol, 2021, 11: 567648.
16
Bai X, Wang Y, Song R, et al. Ultrasound and clinicopathological characteristics of breast cancer for predicting axillary lymph node metastasis[J]. Clin Hemorheol Microcirc, 2023, 85(2): 147-162.
17
Hu W, Liu L, Zhao T, et al. Analysis of ultrasound features for breast cancers with different risk categories and evaluation of a new predicting method[J]. J Clin Ultrasound, 2025, 53(4): 761-777.
18
周婉, 施静, 周锋盛, 等. 超声造影联合临床指标预测乳腺癌患者腋窝淋巴结转移的效能[J]. 中国超声医学杂志, 2024, 40(12): 1349-1353.
19
Xiong J, Zuo W, Wu Y, et al. Ultrasonography and clinicopathological features of breast cancer in predicting axillary lymph node metastases[J]. BMC Cancer, 2022, 22(1): 1155.
20
Pang W, Wang Y, Zhu Y, et al. Predictive value for axillary lymph node metastases in early breast cancer: Based on contrast-enhanced ultrasound characteristics of the primary lesion and sentinel lymph node[J]. Clin Hemorheol Microcirc, 2024, 86(3): 357-367.
21
赵燕, 邹磊, 陈敬玉, 等. 超声造影参数、SII及NLR水平对前列腺癌根治术预后评估的价值[J]. 中国医师杂志, 2024, 26(12): 1830-1834.
22
Tong L, Wang S, Zhang R, et al. High Levels of SII and PIV are the risk factors of axillary lymph node metastases in breast cancer: a retrospective study[J]. Int J Gen Med, 2023, 16: 2211-2218.
23
Şahin AB, Cubukcu E, Ocak B, et al. Low pan-immune-inflammation-value predicts better chemotherapy response and survival in breast cancer patients treated with neoadjuvant chemotherapy[J]. Sci Rep, 2021, 11(1): 14662.
24
Xiong N, Han W, Yu Z. ABO blood type and pretreatment systemic inflammatory response index associated with lymph node metastasis in patients with breast cancer[J]. Int J Gen Med, 2024, 17: 4823-4833.
[1] 高思琦, 张博闻, 蒋天安. 多模态声像图特征预测IgG4相关性胰腺炎应用类固醇类药物后影像学缓解与急性发作[J/OL]. 中华医学超声杂志(电子版), 2025, 22(07): 592-599.
[2] 明昊, 宋宏萍, 白誉誉, 党晓智, 赵阳, 程燕妮, 王琪, 肖迎聪. 自动乳腺超声联合临床病理特征预测Luminal B 型乳腺癌术后复发风险的临床研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 337-347.
[3] 陈庆秋, 钟玲, 张婷, 张孔涌, 桂余, 齐晓伟, 任林. IGF2BP2/CCNB2轴促进三阴性乳腺癌进展的机制研究[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 287-295.
[4] 卜烨, 王鹏, 安丽颖, 陈园. 三阴性乳腺癌组织长链非编码RNA CCAT1、miR-152表达与增殖侵袭基因以及临床病理特征的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 198-205.
[5] 林丽, 杨英, 张嘉, 齐晓伟, 王莉, 王寅欢, 任林. 屈服应对方式在三阴性乳腺癌患者癌症复发恐惧与希望水平间的中介效应[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 226-231.
[6] 张芳芳, 王晶, 苗润琴. 乳腺实性乳头状癌的超声表现与病理学特征研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 460-465.
[7] 安宁, 陈健, 张京伟, 习一清. 长链非编码RNA 乳腺癌抗雌激素耐药基因4 在常见肿瘤进展中的作用[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 203-208.
[8] 杨娜, 胡刚, 潘越. 保乳术和改良根治术后行新辅助化疗对三阴性乳腺癌血清标志物影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 345-348.
[9] 何友新, 韩林荟, 杨贺庆. 新辅助化疗分别联合保乳术和改良根治术治疗Ⅱ、Ⅲ期乳腺癌的应用效果[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 184-187.
[10] 刘军, 王子函, 李梦新, 高国璇, 蒋宏传, 沈光前. 单孔机器人保乳手术初步探索[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 162-165.
[11] 毛东锋, 姚琳, 吴涛, 刘文慧. 乳腺癌术后合并NUP98-HOXA9基因阳性急性髓系白血病1例临床报告[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 290-292.
[12] 何永庆, 苍雪静, 姜亚志. 肠道微球菌科通过免疫介导与乳腺癌发生关联的孟德尔随机化研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 193-198.
[13] 袭厚榕, 隋晓峰. 基于生物信息学分析乳腺癌组织STIP1表达在免疫浸润中的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 208-216.
[14] 吕冉, 林晓东, 宋金龙, 陈婉君, 韩秀晶. 不同临床特征和内分泌治疗药物对乳腺癌患者凝血功能的影响[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(03): 149-158.
[15] 李兴研, 郜业发. 乳腺癌保乳术后放疗致急性放射性皮炎风险预测模型构建及验证[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 165-169.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?