切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (08) : 827 -835. doi: 10.3877/cma.j.issn.1672-6448.2023.08.008

心血管超声影像学

三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估
刘丹妮, 敖梦(), 冉海涛, 李世玉, 秦芳   
  1. 400010 重庆医科大学附属第二医院超声科(超声分子影像重庆市重点实验室)
    400010 重庆医科大学附属第二医院心内科
  • 收稿日期:2022-03-07 出版日期:2023-08-01
  • 通信作者: 敖梦
  • 基金资助:
    国家自然科学基金(81630047); 重庆医科大学附属第二医院“宽仁英才”项目

Biatrial structure and function reverse remodelling in patients with persistent atrial fibrillation after cardioversion: evidence from three dimensional echocardiography and two dimensional speckle tracking imaging

Danni Liu, Meng Ao(), Haitao Ran, Shiyu Li, Fang Qin   

  1. Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
    Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2022-03-07 Published:2023-08-01
  • Corresponding author: Meng Ao
引用本文:

刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.

Danni Liu, Meng Ao, Haitao Ran, Shiyu Li, Fang Qin. Biatrial structure and function reverse remodelling in patients with persistent atrial fibrillation after cardioversion: evidence from three dimensional echocardiography and two dimensional speckle tracking imaging[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(08): 827-835.

目的

应用实时三维超声心动图(RT3DE)及二维斑点追踪成像(2DSTI)技术评估持续性心房颤动(PeAF)复律后窦性心律维持者双心房内径、容积、应变的变化,探讨双心房结构和功能的逆向重构。

方法

这是一项前瞻性研究。纳入2020年8月至2021年12月于重庆医科大学附属第二医院心内科成功复律且随访3个月未复发的PeAF患者21例(病例组),以及在重庆医科大学附属第二医院体检的18例健康志愿者(正常对照组)。应用常规超声、RT3DE、2DSTI对其进行心房结构和功能的评估,21例PeAF患者分别于复律后2 d(M0)、1个月(M1)、3个月(M3)进行超声评估。评估包括二维参数:左心房前后径(LAAPD)、左心房左右径(LALRD)、左心房上下径(LASID)、右心房横径(RACD)、左心室射血分数(LVEF)、二尖瓣口舒张早期峰值流速/二尖瓣环舒张早期峰值运动速度(E/e');双心房三维容积及容积指数:左心房/右心房最大容积(LAVmax/RAVmax)、左心房/右心房P波前容积(LAVpre/RAVpre)、左心房/右心房最小容积(LAVmin/RAVmin)、左心房/右心房最大容积指数(LAVImax/RAVImax)、左心房/右心房P波前容积指数(LAVIpre/RAVIpre)、左心房/右心房最小容积指数(LAVImin/RAVImin);三维射血分数:左心房/右心房总射血分数(LATEF/RATEF)、左心房/右心房被动射血分数(LAPEF/RAPEF)、左心房/右心房主动射血分数(LAAEF/RAAEF);三维扩张指数:左心房/右心房扩张指数(LAEI/RAEI);二维心房应变:左心房/右心房储存期应变(LASr/RASr)、左心房/右心房管道期应变(LAScd/RAScd)、左心房/右心房收缩期应变(LASct/RASct)。对比分析正常对照组与病例组M0、M1、M3各组间参数的差异。

结果

PeAF复律后,随着窦性心律维持时间延长,二维参数LAAPD、LALRD、LASID、RACD,双心房容积及容积指数LAVmax/RAVmax、LAVpre/RAVpre、LAVmin/RAVmin、LAVImax/RAVImax、LAVIpre/RAVIpre、LAVImin/RAVImin逐渐减小(P均<0.05);双心房应变LASr/RASr、LAScd/RAScd、LASct/RASct,射血分数RATEF、RAPEF、LAAEF/RAAEF、LAEI/RAEI总体增加(P均<0.05);LATEF、LAPEF无明显变化(P均>0.05)。病例组M3的RAVImax(P=0.532)、LAScd(P=0.180)及病例组M1的RAScd(P=0.188)与正常对照组比较差异无统计学意义,其余参数与对照者相比差异仍有统计学意义(P均<0.05)。

结论

PeAF患者复律后随着窦性心律维持双心房结构和功能均发生一定程度的逆向重构,RT3DE、2DSTI可对其进行评估;右心房可能较左心房更早、更容易发生逆向重构。

Objective

To explore the bilateral atrial structure and function reverse remodelling by using real-time three dimensional echocardiography (RT3DE) and two dimensional speckle tracking imaging (2DSTI) to evaluate the biatrial diameter, volume, and function changes in persistent atrial fibrillation (PeAF) patients with sinus rhythm after cardioversion.

Methods

This is a prospective study in which 21 patients with PeAF who had been successfully cardioverted at the Cardiology Department of the Second Affiliated Hospital of Chongqing Medical University from August 2020 to December 2021 with no recurrence after 3 months of follow-up were included(case group), as well as 18 healthy volunteers (healthy control group) who underwent physical examination at the Second Affiliated Hospital of Chongqing Medical University. The subjects had their atrial diameter, volume, and function evaluated by conventional ultrasound, RT3DE, and 2DSTI. Patients with PeAF were assessed at 2 days (M0), 1 month (M1), and 3 months (M3) after cardioversion. The right atrial and left atrial parameters assessed included: left atrial anteroposterior diameter (LAAPD), left atrial left-right diameter (LALRD), left atrial superior-inferior diameter (LASID), right atrial transverse diameter (RATD), left ventricular ejection fraction (LVEF), the ratio of early diastolic mitral inflow velocity to early diastolic myocardial relaxation velocity (E/e'), left atrial /right atrial maximal volume (LAVmax/RAVmax), left atrial/right atrial pre-P wave volume (LAVpre/RAVpre), left atrial/right atrial minimal volume (LAVmin/RAVmin), left atrial/right atrial maximal volume index (LAVImax/RAVImax), left atrial/right atrial pre-P wave volume index (LAVIpre/RAVIpre), left atrial/right atrial minimal volume index (LAVImin/RAVImin), left atrial/right atrial total ejection fraction (LATEF/RATEF), left atrial/right atrial passive ejection fraction (LAPEF/RAPEF), left atrial/right atrial active ejection fraction (LAAEF/RAAEF), left atrial/right atrial expansion index (LAEI/RAEI), left atrial/right atrial strain during reservoir phase (LASr/RASr), left atrial/right atrial strain during conduit phase (LAScd/RAScd), and left atrial/right atrial strain during contraction phase (LASct/RASct). The differences in the above parameters between the healthy control group and the case group at M0, M1, and M3 were compared and analyzed.

Results

LAAPD, LALRD, LASID, RATD, LAVmax/RAVmax, LAVpre/RAVpre, LAVmin/RAVmin, LAVImax/RAVImax, LAVIpre/RAVIpre, and LAVImin/RAVImin decreased gradually after cardioversion (P<0.05), LASr/RASr, LAScd/RAScd, LASct/RASct, RATEF,RAPEF, LAAEF/RAAEF, and LAEI/RAEI increased after cardioversion (P<0.05), but there were no significant changes in LATEF and LAPEF (P>0.05). The RAVImax (P=0.532) and LAScd (P=0.180) at M3 and RAScd (P=0.188) at M1 in the case group had no significant changes compared with those of the healthy control group, but the other parameters were statistically significant from those of the healthy control group (P<0.05).

Conclusion

RT3DE and 2D-STI are useful in the evaluation of biatrial reverse remodelling in successfully cardioverted patients with PeAF. The right artium may have greater and faster ability to conduct reverse structure and function remodelling in PeAF patients after cardioversion than the left artium.

图1 双心房三维超声心动图3DQA容积曲线图。图a为左心房3DQA容积曲线图;图b为右心房3DQA容积曲线图
图2 双心房二维应变超声心动图。图a为左心房纵向应变图;图b为右心房纵向应变图
表1 正常对照组与PeAF病例组一般临床资料比较
表2 正常对照组与PeAF不同复律时间病例组的心率和药物治疗情况比较
表3 正常对照组与PeAF不同复律时间病例组左心房超声心动图参数比较[MP25P75)]
参数 对照组(n=18) 病例组(n=21) 统计值 P
M0 M1 M3
LAAPD(mm) 32.56±2.91 41.19±2.64a 39.67±2.50ab 38.71±3.21ab F=21.202 <0.001
LALRD(mm) 35.67±2.77 42.67±3.67a 40.00(39.00,43.00)a 40.95±3.85ab χ2=8.576 0.014
LASID(mm) 52.00±4.21 60.00(59.00,62.00)a 59.38±5.11a 58.10±4.49ab χ2=16.029 <0.001
LVEF(%) 68.78±4.72 65.05±7.04 66.43±6.82 66.48±6.03 F=0.591 0.559
E/e' 10.16±2.08 9.45(8.15,10.40) 8.55(7.45,11.45) 9.19±3.32 χ2=4.875 0.087
LAVmax(ml) 40.44±7.52 68.19±12.75a 62.71±12.81ab 57.95±15.44ab F=17.266 <0.001
LAVImax(ml/m2 24.36±5.05 38.78±9.27a 35.73±9.40ab 32.97±9.92ab F=19.103 <0.001
LAVmin(ml) 16.61±4.35 41.67±12.84a 37.67±12.25ab 34.05±13.73ab F=7.102 0.005
LAVImin(ml/m2 9.96±2.69 23.95±8.77a 21.63±8.42ab 19.55±8.82ab F=6.541 0.008
LAVpre(ml) 28.00±6.96 50.38±11.10a 48.52±11.50a 44.33±13.70ab F=6.075 0.005
LAVIpre(ml/m2 16.79±4.16 28.78±8.11a 27.69±8.21a 25.35±9.02ab F=5.798 0.006
LAEI(%) 152.20±47.84 59.60(54.20,91.70)a 74.08±28.03a 80.02±30.85ab χ2=6.381 0.041
LATEF(%) 59.09±7.10 39.83±11.28a 41.10±9.58a 42.82±10.24a F=1.259 0.295
LAPEF(%) 31.31±7.83 26.34±8.35a 22.70(18.30,27.90)a 24.27±6.76a χ2=3.349 0.187
LAAEF(%) 40.59±6.89 18.64±10.31a 23.73±9.03ab 24.80±9.23ab F=6.035 0.011
LASr(%) 36.03±3.98 21.60±6.27a 23.81±6.66ab 27.00±6.71ab F=22.043 <0.001
LAScd(%) -18.19±3.51 -14.91±3.58a -15.70±3.73a -16.60±3.73 F=3.400 0.043
LASct(%) -17.85±3.42 -4.80(-9.10,-3.20)a -8.11±4.31a -10.40±4.29ab χ2=14.482 0.001
表4 正常对照组与PeAF不同复律时间病例组右心房超声心动图参数比较[MP25P75)]
表5 超声心动图参数观察者内与观察者间重复性检验结果
1
Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the framingham heart study[J]. Circulation, 2003, 107(23): 2920-2925.
2
Prabhu S, Voskoboinik A, McLellan A, et al. A comparison of the electrophysiologic and electroanatomic characteristics between the right and left atrium in persistent atrial fibrillation: Is the right atrium a window into the left?[J]. J Cardiovasc Electrophysiol, 2017, 28(10): 1109-1116.
3
Therkelsen SK, Groenning BA, Svendsen JH, et al. Atrial and ventricular volume and function evaluated by magnetic resonance imaging in patients with persistent atrial fibrillation before and after cardioversion[J]. Am J Cardiol, 2006, 97(8): 1213-1219.
4
Soulat-Dufour L, Lang S, Ederhy S, et al. Biatrial remodelling in atrial fibrillation: A three-dimensional and strain echocardiography insight[J]. Arch Cardiovasc Dis, 2019, 112(10): 585-593.
5
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 233-270.
6
Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(6): 591-600.
7
Qiu D, Peng L, Ghista DN, et al. Left atrial remodeling mechanisms associated with atrial fibrillation[J]. Cardiovasc Eng Technol, 2021, 12(3): 361-372.
8
Müller H, Noble S, Keller PF, et al. Biatrial anatomical reverse remodelling after radiofrequency catheter ablation for atrial fibrillation: evidence from real-time three-dimensional echocardiography[J]. Europace, 2008, 10(9): 1073-1078.
9
于志琴, 李天亮, 张晓丽, 等. 二维斑点追踪成像技术评价阵发性房颤患者射频消融术前后左心房功能[J]. 中国医学影像技术, 2019, 35(7): 1008-1012.
10
Park JH, Lee JS, Ko YG, et al. Histological and biochemical comparisons between right atrium and left atrium in patients with mitral valvular atrial fibrillation[J]. Korean Circ J, 2014, 44(4): 233-242.
11
de Jong S, van Veen TA, van Rijen HV, et al. Fibrosis and cardiac arrhythmias[J]. J Cardiovasc Pharmacol, 2011, 57(6): 630-638.
12
Thomas L, Abhayaratna WP. Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance[J]. JACC Cardiovasc Imaging, 2017, 10(1): 65-77.
13
Sonaglioni A, Lombardo M, Nicolosi GL, et al. Incremental diagnostic role of left atrial strain analysis in thrombotic risk assessment of nonvalvular atrial fibrillation patients planned for electrical cardioversion[J]. Int J Cardiovasc Imaging, 2021, 37(5): 1539-1550.
14
Darweesh RM, Baghdady YK, El HH, et al. Importance of left atrial mechanical function as a predictor of atrial fibrillation risk following cardiac surgery[J]. Int J Cardiovasc Imaging, 2021, 37(6): 1863-1872.
15
Kawakami H, Ramkumar S, Nolan M, et al. Left atrial mechanical dispersion assessed by strain echocardiography as an independent predictor of new-onset atrial fibrillation: a case-control study[J]. J Am Soc Echocardiogr, 2019, 32(10): 1268-1276.
16
徐丽娜, 吕秀章, 李一丹, 等. 二维斑点追踪成像与三维容积成像对左心房时相功能的评价比较[J/OL]. 中华医学超声杂志(电子版), 2021, 18(12): 1158-1163.

URL    
17
Bajraktari G, Bytyçi I, Henein MY. Left atrial structure and function predictors of recurrent fibrillation after catheter ablation: a systematic review and meta-analysis[J]. Clin Physiol Funct Imaging, 2020, 40(1): 1-13.
18
Liu LW, Wu PC, Chiu MY, et al. Sacubitril/valsartan improves left ventricular ejection fraction and reverses cardiac remodeling in Taiwanese patients with heart failure and reduced ejection fraction[J]. Acta Cardiol Sin, 2020, 36(2): 125-132.
19
Martens P, Nuyens D, Rivero-Ayerza M, et al. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction[J]. Clin Res Cardiol, 2019, 108(10): 1074-1082.
20
Giannopoulos G, Kossyvakis C, Vrachatis D, et al. Effect of cryoballoon and radiofrequency ablation for pulmonary vein isolation on left atrial function in patients with nonvalvular paroxysmal atrial fibrillation: A prospective randomized study (Cryo-LAEF study)[J]. J Cardiovasc Electrophysiol, 2019, 30(7): 991-998.
[1] 李颖, 潘绍卿, 丁明岩, 孙丹丹, 曲海波, 侯培培, 朱芳. 实时三维超声心动图对高度房室传导阻滞伴射血分数保留的心力衰竭患者左束支区域起搏后左心室功能及同步性的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 430-436.
[2] 陈丹丹, 马小静, 夏娟, 余正春, 谢姝瑞, 程冠, 吴梅. 二维斑点追踪成像技术对肥厚型心肌病患者右心室功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 417-423.
[3] 郑雨萌, 丁明岩, 孙丹丹, 郭丽娟, 张慧慧, 赵含章, 朱芳. 超声心动图对非瓣膜性心房颤动患者左心房及左心耳功能的评价及血栓形成预测因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(02): 207-212.
[4] 郑雨萌, 丁明岩, 郭丽娟, 张慧慧, 李颖, 赵含章, 朱芳. 心房颤动患者冷冻消融联合左心耳封堵术后左心房结构和功能的超声心动图评价[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1336-1341.
[5] 石晓璟, 苏晓乐, 王利华. 直接口服抗凝药在慢性肾脏病合并心房颤动患者中的应用[J]. 中华肾病研究电子杂志, 2023, 12(01): 26-31.
[6] 王青磊, 李伟, 董慧文, 刘海玲, 王博, 孟祥玲, 冯亚斌. 低管电压扫描联合低剂量造影剂在肺静脉及左心房造影中的价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 89-92.
[7] 王震, 杨晓月, 苏康康, 王朝阳, 李少杰, 陈淑霞, 谷剑. β受体阻滞剂对心力衰竭合并房颤患者预后影响的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 479-482.
[8] 王振东, 李赟, 姜灵凯, 王婷, 刘洋. 心脏瓣膜术同期行房颤射频消融术及左心耳夹闭术预防心源性脑卒中的临床研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 142-148.
[9] 段园霞, 顾柳娜, 张磊, 周丽婷, 朱海瀛, 杨超, 陈海英, 顾晓青, 高宗尚, 黄蛟灵. 上海市奉贤区基层全科医师对心房颤动的认知现状及影响因素分析[J]. 中华心脏与心律电子杂志, 2023, 11(03): 154-159.
[10] 曹宾, 郭瑛, 夏盼盼, 刘佳榛, 王骏, 孙育民. 非阵发性心房颤动的治疗策略:来自心脏电生理一线医师的问卷调查[J]. 中华心脏与心律电子杂志, 2023, 11(03): 147-153.
[11] 蒋子涵, 于丰源, 张宏达, 丁蕾, 米利杰, 唐闽. 2023年美国心律学年会心律失常领域最新临床研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(02): 125-128.
[12] 范家宁, 林大卫, 李明飞, 张峰, 张晓春, 潘文志, 周达新. 左心耳封堵术联合房间隔缺损封堵术一站式手术安全性与有效性研究[J]. 中华心脏与心律电子杂志, 2023, 11(02): 109-113.
[13] 党梦秋, 范嘉祺, 戴晗怡, 陈俊, 李然犀, 徐建国, 李程, 郭宇超, 刘先宝, 王建安. 智能手表对主动脉瓣置换术后患者心房颤动及左束支传导阻滞的诊断价值[J]. 中华心脏与心律电子杂志, 2023, 11(01): 24-27.
[14] 马建惠, 文明, 谢芳, 韩琦. 人性化护理在心房颤动合并胃食管反流患者射频消融术中的应用及满意度分析[J]. 中华胃食管反流病电子杂志, 2023, 10(01): 46-49.
[15] 邱令智, 胡萍, 罗婷, 鄢华. 脂蛋白(a)与心房颤动关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 280-284.
阅读次数
全文


摘要