切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (09) : 665 -670. doi: 10.3877/cma.j.issn.1672-6448.2019.09.005

所属专题: 乳腺超声 文献

浅表器官超声影像学

自动乳腺超声诊断系统结合计算机辅助检测乳腺恶性肿瘤敏感度的影响因素分析
张歌1, 宋宏萍1,(), 杨珊灵1, 王廷2, 樊菁2, 何光彬1, 秦海英1   
  1. 1. 710032 西安,空军军医大学西京医院超声医学科
    2. 710032 西安,空军军医大学西京医院甲状腺乳腺血管外科
  • 收稿日期:2019-03-13 出版日期:2019-09-01
  • 通信作者: 宋宏萍
  • 基金资助:
    陕西省国际科技合作与交流计划项目(2017KW-057); 陕西省高等教育学会2017年度高等教育科学研究项目(XGH17281)

Factors influencing sensitivity of computer-aided detection system in detection of breast cancer based on an automated breast ultrasound system

Ge Zhang1, Hongping Song1,(), Shanling Yang1, Ting Wang2, Jing Fan2, Guangbin He1, Haiying Qin1   

  1. 1. Department of Ultrasound, Xijing Hospital, Xi′an 710032, China
    2. Department of Thyroid/Breast and Vascular Surgery, Xijing Hospital, Xi′an 710032, China
  • Received:2019-03-13 Published:2019-09-01
  • Corresponding author: Hongping Song
  • About author:
    Corresponding author: Song Hongping, Email:
引用本文:

张歌, 宋宏萍, 杨珊灵, 王廷, 樊菁, 何光彬, 秦海英. 自动乳腺超声诊断系统结合计算机辅助检测乳腺恶性肿瘤敏感度的影响因素分析[J]. 中华医学超声杂志(电子版), 2019, 16(09): 665-670.

Ge Zhang, Hongping Song, Shanling Yang, Ting Wang, Jing Fan, Guangbin He, Haiying Qin. Factors influencing sensitivity of computer-aided detection system in detection of breast cancer based on an automated breast ultrasound system[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(09): 665-670.

目的

评估影响计算机辅助检测(CAD)识别自动乳腺超声诊断系统(ABUS)乳腺恶性肿瘤敏感度的因素。

方法

收集自2016年1月至2017年2月于空军军医大学西京医院行ABUS检查并经外科手术或组织学活检病理证实的乳腺恶性肿瘤患者232例,共240个恶性病灶。所有病例均经CAD软件检测,统计CAD对病灶的总敏感度,并统计分析病灶组织学类型、最大径、距乳头距离、距皮肤距离及象限等因素与CAD敏感度之间的关系。以外科手术或组织学活检病理结果为诊断"金标准",采用χ2检验分析病灶组织学类型、最大径、距乳头距离、距皮肤距离、象限、病灶边缘特征等因素与CAD敏感度的关系。

结果

CAD对恶性病灶的总敏感度为85%(204/240),对不同病理学类型的敏感度分别为:浸润性导管癌89.0%(186/209)、导管原位癌53.9%(14/29)、黏液癌75.0%(3/4)、恶性叶状肿瘤100%(1/1),差异有统计学意义(χ2=18.836,P<0.001)。病灶最大径、距乳头距离、距皮肤距离及象限均与CAD敏感度之间比较,差异无统计学意义(P>0.05)。病灶距皮肤距离、病灶边缘特征与CAD对浸润性导管癌的敏感度之间比较,差异有统计学意义(P<0.05)。

结论

CAD对恶性病灶的敏感度较高(85.0%),尤其是对浸润性导管癌的检出(89.0%),医师在借助CAD读图时,应注意是否有遗漏的导管原位癌、位置深或边缘模糊的浸润性导管癌。

Objective

To evaluate the factors affecting the sensitivity of computer-aided detection (CAD) system in detection of breast cancer based on an automated breast ultrasound system (ABUS).

Methods

ABUS images from 232 women with 240 histologically proven malignant lesions were collected from January 2016 to February 2017 in this retrospective study. The CAD system (QView Medical, USA) was used to evaluate ABUS images. The total sensitivity for breast cancer detection and its associations with histological type, maximum diameter, distance from the nipple, distance from the skin, and the quadrant of tumor were evaluated.

Results

The total sensitivity of the CAD based on the ABUS for detection of breast cancer was 85.0% (204/240), and the sensitivities for detecting invasive ductal carcinoma (IDC), ductal carcinoma in situ (DCIS), mucinous carcinoma, and malignant phyllodes tumor were 89.0% (186/209), 53.9% (14/29), 75.0% (3/4), and 100% (1/1), respectively (χ2=18.836, P=0.000). The sensitivity of CAD had no significant association with the maximum diameter of lesion, the distance from the nipple, the distance from the skin, and the quadrant of tumor (P>0.05). For IDC, there was a significant association between the sensitivity of CAD and the distance from lesion to the skin and the margin of lesion (P<0.05).

Conclusions

ABUS-CAD has a high sensitivity (85.0%) for detecting breast cancer, especially for IDC (89.0%). When doctors interpret images with the assistance of CAD, attention should be paid to DCIS and IDC with a deep location or indistinct.

图1 计算机辅助检测系统工作站界面示意图。绿圈表示计算机辅助检测系统标记的可疑病灶,圈1为真阳性,此病灶经病理证实为浸润性导管癌;圈2为假阳性,为气泡伪像
表1 240个病床的组织学类型、最大径、距乳头距离、距皮肤距离及象限与计算机辅助检测系统敏感度的关系
表2 209个病床的浸润性导管癌最大径、距乳头距离、距皮肤距离及象限与计算机辅助检测敏感度的关系
表3 浸润性导管癌病灶边缘特征与计算机辅助检测敏感度的关系
表4 乳腺浸润性导管癌肿块型、非肿块型与计算机辅助检测敏感度的关系
表5 乳腺导管原位癌与计算机辅助检测敏感度的关系
[1]
Society AC, Cancer facts & figures [J], Am Caner Soc, 2016.
[2]
Organization WH. The global burden of disease: 2004 update [M]// The global burden of disease: published by the Harvard School of Public Health on behalf of the World Health Organization and the World Bank, 2008: 4.
[3]
Chiu SY, Duffy S, Yen AM, et al. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening [J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(5): 1219-1228.
[4]
Chan SW, Cheung PS, Chan S, et al. Benefit of ultrasonography in the detection of clinically and mammographically occult breast cancer [J]. World J Surg, 2008, 32(12): 2593-2598.
[5]
Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study [J]. Radiol, 2015, 274(3): 663-673.
[6]
Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts [J]. Eur Radiol, 2010, 20(3): 734-742.
[7]
闫静茹,高喜璨,巨艳, 等. 自动乳腺容积超声成像与乳腺X线、常规手持超声检查患者接受度的对比分析研究 [J]. 中华超声影像学杂志, 2017, 26(9): 787-792.
[8]
van Zelst JCM, Tan T, Clauser P, et al. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts [J]. Eur Radiol, 2018, 28(7): 2996-3006.
[9]
Xu X, Bao L, Tan Y, et al. 1000-Case Reader Study of Radiologists’ Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System [J]. Ultrasound Med Biol, 2018, 44(8): 1694-1702.
[10]
Jiang Y, Inciardi MF, Edwards AV, et al. Interpretation Time Using a Concurrent-Read Computer-Aided Detection System for Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breast Tissue [J]. AJR Am J Roentgenol, 2018, 211(2): 452-461.
[11]
D′Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System [M]. Reston, VA: American College of Radiology, 2013.
[12]
Winsberg F. Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis [J]. Radiol, 1967, 89(2): 211-215.
[13]
Brem RF, Baum J, Lechner M, et al. Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial [J]. AJR Am J Roentgenol, 2003, 181(3): 687-689.
[14]
张歌,闫静茹,巨艳, 等. 自动乳腺超声成像系统在乳腺癌筛查和诊断中的应用进展 [J/CD]. 中华医学超声杂志(电子版), 2017, 14(11): 805-809.
[15]
Houssami N, Ciatto S, Irwig L, et al. The comparative sensitivity of mammography and ultrasound in women with breast symptoms: an age-specific analysis [J]. Breast, 2002, 11(2): 125-130.
[16]
陈文志,林文,姜杰, 等. 超声对乳腺癌的诊断价值 [J]. 中国临床实用医学, 2009, 3(11): 21-22.
[17]
李银珍,黄道中,李进兵, 等. 乳腺浸润性导管癌的超声特征 [J]. 中国医学影像技术, 2004, 20(12): 1815-1817.
[18]
Toikkanen S, Pylkkänen L, Joensuu H. Invasive lobular carcinoma of the breast has better short- and long-term survival than invasive ductal carcinoma [J]. Br J Cancer, 1997, 76(9): 1234-1240.
[19]
Jalalian A, Mashohor S, Mahmud R, et al. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection [J]. EXCLI J, 2017, 16: 113-137.
[20]
van Zelst JC, Tan T, Platel B, et al. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection [J]. Eur J Radiol, 2017, 89: 54-59.
[21]
谢菲,周波,杨德起, 等. 钼靶X线及超声在乳腺导管原位癌诊断中的价值 [J]. 中国医学影像技术, 2012, 28(7): 1314-1317.
[1] 张旭, 徐建平, 苏冬明, 王彩芬, 王大力, 张文智. 男性乳腺肿块的超声造影特征[J]. 中华医学超声杂志(电子版), 2023, 20(08): 854-859.
[2] 邵华, 那子悦, 荆慧, 李博, 王秋程, 程文. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 849-853.
[3] 章美武, 吕淑懿, 范晓翔, 庄鲁辉, 裘玉琴, 张柏松, 张燕. 超声引导下抽液联合高渗葡萄糖冲洗治疗乳腺癌术后皮下积液的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 327-331.
[4] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[8] 王嘉, 郭宝良, 王杉, 张殿龙, 王弥迦, 周天阳, 张建国, 金锋. 初诊Ⅳ期乳腺癌诊疗临床实践指南解读[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 250-254.
[9] 张彬月, 贾红燕. 紫杉醇/白蛋白紫杉醇为基础的化疗联合PD-1/PD-L1抑制剂治疗三阴性乳腺癌的疗效和安全性:荟萃分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 52-58.
[10] 吴亚婷, 张胜行, 王水良. RNA m6A甲基化修饰调控异常在乳腺癌转移中作用的研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 45-52.
[11] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[12] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[13] 李嘉颐, 张虹, 叶京明, 刘荫华, 徐玲, 张爽. 雄激素受体在乳腺癌应用中的探索之路[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1031-1038.
[14] 杨凡, 张虹, 李嘉颐, 辛灵, 向泓雨, 刘倩, 程元甲, 叶京明, 段学宁, 刘荫华, 徐玲, 张爽. 早期三阴性乳腺癌中CK5/6的表达特点及其与预后和新辅助化疗疗效的相关性[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1081-1088.
[15] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
阅读次数
全文


摘要