切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (09) : 665 -670. doi: 10.3877/cma.j.issn.1672-6448.2019.09.005

所属专题: 乳腺超声 文献

浅表器官超声影像学

自动乳腺超声诊断系统结合计算机辅助检测乳腺恶性肿瘤敏感度的影响因素分析
张歌1, 宋宏萍1,(), 杨珊灵1, 王廷2, 樊菁2, 何光彬1, 秦海英1   
  1. 1. 710032 西安,空军军医大学西京医院超声医学科
    2. 710032 西安,空军军医大学西京医院甲状腺乳腺血管外科
  • 收稿日期:2019-03-13 出版日期:2019-09-01
  • 通信作者: 宋宏萍
  • 基金资助:
    陕西省国际科技合作与交流计划项目(2017KW-057); 陕西省高等教育学会2017年度高等教育科学研究项目(XGH17281)

Factors influencing sensitivity of computer-aided detection system in detection of breast cancer based on an automated breast ultrasound system

Ge Zhang1, Hongping Song1,(), Shanling Yang1, Ting Wang2, Jing Fan2, Guangbin He1, Haiying Qin1   

  1. 1. Department of Ultrasound, Xijing Hospital, Xi′an 710032, China
    2. Department of Thyroid/Breast and Vascular Surgery, Xijing Hospital, Xi′an 710032, China
  • Received:2019-03-13 Published:2019-09-01
  • Corresponding author: Hongping Song
  • About author:
    Corresponding author: Song Hongping, Email:
引用本文:

张歌, 宋宏萍, 杨珊灵, 王廷, 樊菁, 何光彬, 秦海英. 自动乳腺超声诊断系统结合计算机辅助检测乳腺恶性肿瘤敏感度的影响因素分析[J/OL]. 中华医学超声杂志(电子版), 2019, 16(09): 665-670.

Ge Zhang, Hongping Song, Shanling Yang, Ting Wang, Jing Fan, Guangbin He, Haiying Qin. Factors influencing sensitivity of computer-aided detection system in detection of breast cancer based on an automated breast ultrasound system[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(09): 665-670.

目的

评估影响计算机辅助检测(CAD)识别自动乳腺超声诊断系统(ABUS)乳腺恶性肿瘤敏感度的因素。

方法

收集自2016年1月至2017年2月于空军军医大学西京医院行ABUS检查并经外科手术或组织学活检病理证实的乳腺恶性肿瘤患者232例,共240个恶性病灶。所有病例均经CAD软件检测,统计CAD对病灶的总敏感度,并统计分析病灶组织学类型、最大径、距乳头距离、距皮肤距离及象限等因素与CAD敏感度之间的关系。以外科手术或组织学活检病理结果为诊断"金标准",采用χ2检验分析病灶组织学类型、最大径、距乳头距离、距皮肤距离、象限、病灶边缘特征等因素与CAD敏感度的关系。

结果

CAD对恶性病灶的总敏感度为85%(204/240),对不同病理学类型的敏感度分别为:浸润性导管癌89.0%(186/209)、导管原位癌53.9%(14/29)、黏液癌75.0%(3/4)、恶性叶状肿瘤100%(1/1),差异有统计学意义(χ2=18.836,P<0.001)。病灶最大径、距乳头距离、距皮肤距离及象限均与CAD敏感度之间比较,差异无统计学意义(P>0.05)。病灶距皮肤距离、病灶边缘特征与CAD对浸润性导管癌的敏感度之间比较,差异有统计学意义(P<0.05)。

结论

CAD对恶性病灶的敏感度较高(85.0%),尤其是对浸润性导管癌的检出(89.0%),医师在借助CAD读图时,应注意是否有遗漏的导管原位癌、位置深或边缘模糊的浸润性导管癌。

Objective

To evaluate the factors affecting the sensitivity of computer-aided detection (CAD) system in detection of breast cancer based on an automated breast ultrasound system (ABUS).

Methods

ABUS images from 232 women with 240 histologically proven malignant lesions were collected from January 2016 to February 2017 in this retrospective study. The CAD system (QView Medical, USA) was used to evaluate ABUS images. The total sensitivity for breast cancer detection and its associations with histological type, maximum diameter, distance from the nipple, distance from the skin, and the quadrant of tumor were evaluated.

Results

The total sensitivity of the CAD based on the ABUS for detection of breast cancer was 85.0% (204/240), and the sensitivities for detecting invasive ductal carcinoma (IDC), ductal carcinoma in situ (DCIS), mucinous carcinoma, and malignant phyllodes tumor were 89.0% (186/209), 53.9% (14/29), 75.0% (3/4), and 100% (1/1), respectively (χ2=18.836, P=0.000). The sensitivity of CAD had no significant association with the maximum diameter of lesion, the distance from the nipple, the distance from the skin, and the quadrant of tumor (P>0.05). For IDC, there was a significant association between the sensitivity of CAD and the distance from lesion to the skin and the margin of lesion (P<0.05).

Conclusions

ABUS-CAD has a high sensitivity (85.0%) for detecting breast cancer, especially for IDC (89.0%). When doctors interpret images with the assistance of CAD, attention should be paid to DCIS and IDC with a deep location or indistinct.

图1 计算机辅助检测系统工作站界面示意图。绿圈表示计算机辅助检测系统标记的可疑病灶,圈1为真阳性,此病灶经病理证实为浸润性导管癌;圈2为假阳性,为气泡伪像
表1 240个病床的组织学类型、最大径、距乳头距离、距皮肤距离及象限与计算机辅助检测系统敏感度的关系
表2 209个病床的浸润性导管癌最大径、距乳头距离、距皮肤距离及象限与计算机辅助检测敏感度的关系
表3 浸润性导管癌病灶边缘特征与计算机辅助检测敏感度的关系
表4 乳腺浸润性导管癌肿块型、非肿块型与计算机辅助检测敏感度的关系
表5 乳腺导管原位癌与计算机辅助检测敏感度的关系
[1]
Society AC, Cancer facts & figures [J], Am Caner Soc, 2016.
[2]
Organization WH. The global burden of disease: 2004 update [M]// The global burden of disease: published by the Harvard School of Public Health on behalf of the World Health Organization and the World Bank, 2008: 4.
[3]
Chiu SY, Duffy S, Yen AM, et al. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening [J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(5): 1219-1228.
[4]
Chan SW, Cheung PS, Chan S, et al. Benefit of ultrasonography in the detection of clinically and mammographically occult breast cancer [J]. World J Surg, 2008, 32(12): 2593-2598.
[5]
Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study [J]. Radiol, 2015, 274(3): 663-673.
[6]
Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts [J]. Eur Radiol, 2010, 20(3): 734-742.
[7]
闫静茹,高喜璨,巨艳, 等. 自动乳腺容积超声成像与乳腺X线、常规手持超声检查患者接受度的对比分析研究 [J]. 中华超声影像学杂志, 2017, 26(9): 787-792.
[8]
van Zelst JCM, Tan T, Clauser P, et al. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts [J]. Eur Radiol, 2018, 28(7): 2996-3006.
[9]
Xu X, Bao L, Tan Y, et al. 1000-Case Reader Study of Radiologists’ Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System [J]. Ultrasound Med Biol, 2018, 44(8): 1694-1702.
[10]
Jiang Y, Inciardi MF, Edwards AV, et al. Interpretation Time Using a Concurrent-Read Computer-Aided Detection System for Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breast Tissue [J]. AJR Am J Roentgenol, 2018, 211(2): 452-461.
[11]
D′Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System [M]. Reston, VA: American College of Radiology, 2013.
[12]
Winsberg F. Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis [J]. Radiol, 1967, 89(2): 211-215.
[13]
Brem RF, Baum J, Lechner M, et al. Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial [J]. AJR Am J Roentgenol, 2003, 181(3): 687-689.
[14]
张歌,闫静茹,巨艳, 等. 自动乳腺超声成像系统在乳腺癌筛查和诊断中的应用进展 [J/CD]. 中华医学超声杂志(电子版), 2017, 14(11): 805-809.
[15]
Houssami N, Ciatto S, Irwig L, et al. The comparative sensitivity of mammography and ultrasound in women with breast symptoms: an age-specific analysis [J]. Breast, 2002, 11(2): 125-130.
[16]
陈文志,林文,姜杰, 等. 超声对乳腺癌的诊断价值 [J]. 中国临床实用医学, 2009, 3(11): 21-22.
[17]
李银珍,黄道中,李进兵, 等. 乳腺浸润性导管癌的超声特征 [J]. 中国医学影像技术, 2004, 20(12): 1815-1817.
[18]
Toikkanen S, Pylkkänen L, Joensuu H. Invasive lobular carcinoma of the breast has better short- and long-term survival than invasive ductal carcinoma [J]. Br J Cancer, 1997, 76(9): 1234-1240.
[19]
Jalalian A, Mashohor S, Mahmud R, et al. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection [J]. EXCLI J, 2017, 16: 113-137.
[20]
van Zelst JC, Tan T, Platel B, et al. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection [J]. Eur J Radiol, 2017, 89: 54-59.
[21]
谢菲,周波,杨德起, 等. 钼靶X线及超声在乳腺导管原位癌诊断中的价值 [J]. 中国医学影像技术, 2012, 28(7): 1314-1317.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[3] 杨柳, 宋振川, 王新乐. 乳腺癌改良根治术联合背阔肌复位的临床疗效评估[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 269-273.
[4] 牛海刚, 郭文科. 三阴性乳腺癌组织中双特异性磷酸酶14与核受体相互作用蛋白1的表达及预后价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 199-205.
[5] 张钊, 骆成玉, 张树琦, 何平, 李旭斌. 不同术式治疗早期乳腺癌的效果及并发症发生率、复发率比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 494-497.
[6] 宋佳, 汪波, 孙凯律, 商江峰, 吴旦平, 肇毅. 吲哚菁绿荧光显影联合亚甲蓝染色在乳腺癌前哨淋巴结活检中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 498-501.
[7] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[8] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[9] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[10] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[11] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[12] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[13] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[14] 张梦婷, 穷拉姆, 色珍, 李逸群, 德庆旺姆. 西藏地区藏族乳腺癌新辅助化疗的真实世界研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 441-446.
[15] 黄宏山, 陈成彩. 经淋巴管超声造影在乳腺癌前哨淋巴结诊断中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 411-414.
阅读次数
全文


摘要