[1] |
Society AC, Cancer facts & figures [J], Am Caner Soc, 2016.
|
[2] |
Organization WH. The global burden of disease: 2004 update [M]// The global burden of disease: published by the Harvard School of Public Health on behalf of the World Health Organization and the World Bank, 2008: 4.
|
[3] |
Chiu SY, Duffy S, Yen AM, et al. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening [J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(5): 1219-1228.
|
[4] |
Chan SW, Cheung PS, Chan S, et al. Benefit of ultrasonography in the detection of clinically and mammographically occult breast cancer [J]. World J Surg, 2008, 32(12): 2593-2598.
|
[5] |
Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study [J]. Radiol, 2015, 274(3): 663-673.
|
[6] |
Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts [J]. Eur Radiol, 2010, 20(3): 734-742.
|
[7] |
闫静茹,高喜璨,巨艳, 等. 自动乳腺容积超声成像与乳腺X线、常规手持超声检查患者接受度的对比分析研究 [J]. 中华超声影像学杂志, 2017, 26(9): 787-792.
|
[8] |
van Zelst JCM, Tan T, Clauser P, et al. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts [J]. Eur Radiol, 2018, 28(7): 2996-3006.
|
[9] |
Xu X, Bao L, Tan Y, et al. 1000-Case Reader Study of Radiologists’ Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System [J]. Ultrasound Med Biol, 2018, 44(8): 1694-1702.
|
[10] |
Jiang Y, Inciardi MF, Edwards AV, et al. Interpretation Time Using a Concurrent-Read Computer-Aided Detection System for Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breast Tissue [J]. AJR Am J Roentgenol, 2018, 211(2): 452-461.
|
[11] |
D′Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System [M]. Reston, VA: American College of Radiology, 2013.
|
[12] |
Winsberg F. Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis [J]. Radiol, 1967, 89(2): 211-215.
|
[13] |
Brem RF, Baum J, Lechner M, et al. Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial [J]. AJR Am J Roentgenol, 2003, 181(3): 687-689.
|
[14] |
张歌,闫静茹,巨艳, 等. 自动乳腺超声成像系统在乳腺癌筛查和诊断中的应用进展 [J/CD]. 中华医学超声杂志(电子版), 2017, 14(11): 805-809.
|
[15] |
Houssami N, Ciatto S, Irwig L, et al. The comparative sensitivity of mammography and ultrasound in women with breast symptoms: an age-specific analysis [J]. Breast, 2002, 11(2): 125-130.
|
[16] |
陈文志,林文,姜杰, 等. 超声对乳腺癌的诊断价值 [J]. 中国临床实用医学, 2009, 3(11): 21-22.
|
[17] |
李银珍,黄道中,李进兵, 等. 乳腺浸润性导管癌的超声特征 [J]. 中国医学影像技术, 2004, 20(12): 1815-1817.
|
[18] |
Toikkanen S, Pylkkänen L, Joensuu H. Invasive lobular carcinoma of the breast has better short- and long-term survival than invasive ductal carcinoma [J]. Br J Cancer, 1997, 76(9): 1234-1240.
|
[19] |
Jalalian A, Mashohor S, Mahmud R, et al. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection [J]. EXCLI J, 2017, 16: 113-137.
|
[20] |
van Zelst JC, Tan T, Platel B, et al. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection [J]. Eur J Radiol, 2017, 89: 54-59.
|
[21] |
谢菲,周波,杨德起, 等. 钼靶X线及超声在乳腺导管原位癌诊断中的价值 [J]. 中国医学影像技术, 2012, 28(7): 1314-1317.
|