切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (09) : 660 -664. doi: 10.3877/cma.j.issn.1672-6448.2019.09.004

所属专题: 文献

浅表器官超声影像学

计算机辅助诊断系统对甲状腺结节的诊断价值研究
李婷婷1, 卢漫1,(), 巫明钢1, 王璐1, 魏婷1, 廖继芬1, 邹世彬1, 李妍洁1   
  1. 1. 电子科技大学医学院附属四川省肿瘤医院超声医学中心
  • 收稿日期:2019-03-19 出版日期:2019-09-01
  • 通信作者: 卢漫

Performance of computer-aided diagnosis system versus radiologists in diagnosis of thyroid nodules

Tingting Li1, Man Lu1,(), Minggang Wu1, Lu Wang1, Ting Wei1, Jifen Liao1, Shibin Zou1, Yanjie Li1   

  1. 1. Department of Ultrasound, Sichuan Cancer Hospital, School of Medicine, UESTIC, Chengdu 610041, China
  • Received:2019-03-19 Published:2019-09-01
  • Corresponding author: Man Lu
  • About author:
    Corresponding author: Lu Man, Email:
引用本文:

李婷婷, 卢漫, 巫明钢, 王璐, 魏婷, 廖继芬, 邹世彬, 李妍洁. 计算机辅助诊断系统对甲状腺结节的诊断价值研究[J/OL]. 中华医学超声杂志(电子版), 2019, 16(09): 660-664.

Tingting Li, Man Lu, Minggang Wu, Lu Wang, Ting Wei, Jifen Liao, Shibin Zou, Yanjie Li. Performance of computer-aided diagnosis system versus radiologists in diagnosis of thyroid nodules[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(09): 660-664.

目的

比较计算机辅助诊断(CAD)系统与多名超声医师对甲状腺结节的诊断效能,初步探讨CAD软件的诊断价值及分析甲状腺结节超声特征对CAD软件及超声医师诊断的影响。

方法

选取2016年2月至2018年6月电子科技大学医学院附属四川省肿瘤医院医学影像信息(PACS)系统中甲状腺结节灰阶超声图像50张,采用CAD软件及111名超声医师同时对50张甲状腺结节图像进行诊断。以病理结果为"金标准"分别计算CAD软件,准确率最高的高年资医师、准确率最高的低年资医师鉴别诊断甲状腺结节的敏感度、特异度、阳性预测值、阴性预测值,并绘制受试者工作特征曲线(ROC曲线);各组间准确率的比较采用McNemar检验,ROC曲线下面积的比较采用Z检验。

结果

CAD软件、准确率最高的高年资医师、准确率最高的低年资医师诊断甲状腺结节良恶性的敏感度、特异度、阳性预测值、阴性预测值及准确性分别为76.9%、87.5%、86.9%、77.8%、82.0%;86.9%、77.8%、76.9%、87.5%、82.0%;82.6%、70.4%、70.4%、82.6%、76%;CAD软件与高年资医师诊断准确率相同且均高于低年资医师,差异有统计学意义;CAD软件与高年资医师ROC曲线下面积一致且均大于低年资医师,但差异均无统计学意义(P均>0.05)。医师误诊的病例主要为桥本甲状腺炎以及微小低回声病灶伴点状强回声的甲状腺结节,而分布位置以及结节内粗大钙化灶伴后方宽大声影造成了CAD软件的误诊。

结论

CAD软件诊断甲状腺结节的准确率与高年资医师一致,高于低年资医师;甲状腺结节的分布位置以及结节内粗大钙化灶伴后方宽大声影可能是影响CAD软件诊断准确性的因素;而桥本甲状腺炎以及微小低回声病灶伴点状强回声可能会影响超声医师对甲状腺结节的正确诊断。

Objective

To compare the diagnostic performance of computer-aided diagnosis (CAD) system versus 111 radiologists with different experiences (senior and junior radiologists) in identifying benign and malignant thyroid nodules.

Methods

A total of 50 thyroid nodules and 111 radiologists were enrolled in this study. All the diagnostic results for the 50 nodules were estimated by radiologists and CAD system simultaneously. The diagnostic sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of senior and junior radiologists with maximum accuracy and CAD for differentiation between benign and malignant thyroid nodules were compared. The McNemar test was used to compare the accuracy between the two groups. Receiver operating characteristic curve (ROC) analysis was performed, and the Z test was used to compare the area under the ROC curve (AUC).

Results

The sensitivity, specificity, PPV, NPV, and overall accuracy of CAD in differentiation between benign and malignant thyroid nodules were 76.9%, 87.5%, 86.9%, 77.8%, and 82.0%, respectively; the corresponding percentages were 86.9%, 77.8%, 76.9%, 87.5%, and 82.0% for the senior radiologist with maximum accuracy, and 82.6%, 70.4%, 70.4%, 82.6%, and 76% for the junior radiologist with maximum accuracy. In ROC curve analysis, the AUC values were 0.82, 0.82, and 0.76 for CAD, senior and junior radiologists with maximum accuracy, separately, and the CAD system achieved a diagnostic accuracy that was comparable to that of the senior radiologist but higher than that of the junior radiologist (P<0.05). Both CAD system and senior radiologist had a larger AUC in the differential diagnosis of thyroid nodules than the junior radiologist; however, the difference between CAD system and the senior radiologist was not statistically significant (0.82 vs 0.76, P=0.5). For radiologists, the nodules in Hashimoto's thyroiditis and small hypoechoic nodules with colloid inside the lesion tended to be misdiagnosed. For CAD system, the distribution of nodules and the presence of macrocalcification inside the lesion with wide acoustic shadow may also influence the analysis of the CAD system.

Conclusions

In thyroid nodule diagnosis, CAD system can achieve a diagnostic accuracy comparable to that of the senior radiologist with maximum accuracy, but higher than that of the junior radiologist with maximum accuracy. The distribution of thyroid nodules and the presence of macrocalcification inside the lesion may influence the performance the CAD system, while the nodules in Hashimoto's thyroiditis and small hypoechoic nodules with colloid inside the lesion are harder to distinguish for radiologists.

图2 医师误诊的两例甲状腺结节超声图像。图a为中微小恶性结节被大多数医师误诊为良性结节(准确性为20.9%);图b为桥本甲状腺炎背景下的恶性结节被误诊为良性(准确性为24.0%);计算机辅助诊断系统误诊的两例超声图像。图c为紧贴气管的良性结节被误诊为恶性结节,图d为有粗大钙化灶的恶性结节被误诊为良性结节
表1 CAD软件、准确率最高的高年资医师、准确率最高的低年资医师诊断甲状腺结节良恶性的敏感度、特异度、阳性预测值、阴性预测值、准确性及ROC曲线下面积
图1 CAD软件、诊断准确率最高的高年资医师、诊断准确率最高的低年资医师受试者工作特征曲线
[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]
Kim SJ, Moon WK, Cho N. Sonographic criteria for fine-needle aspiration cytology in a Korean female population undergoing thyroid ultrasound screening [J]. Acta Radiol, 2010, 51(5): 475-481.
[3]
Kim EK, Park CS, Chung WY, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid [J]. AJR Am J Roentgenol, 2002, 178(3): 687-691.
[4]
Wei X, Li Y, Zhang S, et al. Meta-analysis of thyroid imaging reporting and data system in the ultrasonographic diagnosis of 10,437 thyroid nodules [J]. Head Neck, 2016, 38(2): 309-315.
[5]
Kakeda S, Moriya J, Sato H, et al. Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system [J]. AJR Am J Roentgenol, 2004, 182(2): 505-510.
[6]
De Boo DW, Prokop M, Uffmann M, et al. Computer-aided detection (CAD) of lung nodules and small tumours on chest radiographs [J]. Eur J Radiol, 2009, 72(2): 218-225.
[7]
Choi YJ, Baek JH, Park HS, et al. A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment [J]. Thyroid, 2017, 27(4): 546-552.
[8]
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
[9]
Firmino M, Angelo G, Morais H, et al. Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy [J]. Biomed Eng Online, 2016, 15(1): 2.
[10]
Cho KR, Seo BK, Woo OH, et al. Breast Cancer Detection in a Screening Population: Comparison of Digital Mammography, Computer-Aided Detection Applied to Digital Mammography and Breast Ultrasound [J]. J Breast Cancer, 2016, 19(3): 316-323.
[11]
Jeong EY, Kim HL, Ha EJ, et al. Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators [J]. Eur Radiol, 2019, 29(4): 1978-1985.
[12]
Al Nofal A, Gionfriddo MR, Javed A, et al. Accuracy of thyroid nodule sonography for the detection of thyroid cancer in children: systematic review and meta-analysis [J]. Clin Endocrinol (Oxf), 2016, 84(3): 423-430.
[13]
Brito JP, Gionfriddo MR, Al Nofal A, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis [J]. J Clin Endocrinol Metab, 2014, 99(4): 1253-1263.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[6] 刘畅, 蒋洁, 胥雪冬, 崔立刚, 王淑敏, 陈文. 北京市海淀区医疗机构甲状腺超声检查及TIRADS分类基线调查[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 693-697.
[7] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[8] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[9] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[10] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[11] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[12] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[13] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
阅读次数
全文


摘要