1 |
武玺宁, 欧阳云淑, 孟华, 等. 超声医学影像工作站在住院医师超声报告质量控制方面的应用 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(5): 360-363.
|
2 |
Golnari P, Forsberg D, Rosipko B, et al. Online error reporting for managing quality control within radiology [J]. J Digit Imaging, 2016, 29(3): 301-308.
|
3 |
刘岚, 魏国卫, 张凯. 基于5G/AIoT的新华-崇明医联体超声远程智慧医疗与智慧教育建设及初步应用研究 [J]. 中国超声医学杂志, 2020, 36(7): 670-672.
|
4 |
Dananjayan S, Raj GM. 5G in healthcare: how fast will be the transformation? [J]. Ir J Med Sci, 2021, 190(2): 497-501.
|
5 |
Ye R, Zhou X, Shao F, et al. Feasibility of a 5G-based robot-assisted remote ultrasound system for cardiopulmonary assessment of patients with coronavirus disease 2019 [J]. Chest, 2021, 159(1): 270-281.
|
6 |
Dowding D, Randell R, Gardner P, et al. Dashboards for improving patient care: review of the literature [J]. Int J Med Inform, 2015, 84(2): 87-100.
|
7 |
Randell R, Alvarado N, McVey L, et al. How, in what contexts, and why do quality dashboards lead to improvements in care quality in acute hospitals? Protocol for a realist feasibility evaluation [J]. BMJ Open, 2020, 10(2): e033208.
|
8 |
Shailam R, Botwin A, Stout M, et al. Real-time electronic dashboard technology and its use to improve pediatric radiology workflow [J]. Curr Probl Diagn Radiol, 2018, 47(1): 3-5.
|
9 |
Scheinfeld MH, Feltus W, DiMarco P, et al. The emergency radiology dashboard: facilitating workflow with realtime data [J]. Curr Probl Diagn Radiol, 2020, 49(4): 231-233.
|
10 |
Karami M, Safdari R. From information management to information visualization: development of radiology dashboards [J]. Appl Clin Inform, 2016, 7(2): 308-329.
|
11 |
Randell R, Alvarado N, McVey L, et al. Requirements for a quality dashboard: Lessons from National Clinical Audits [J]. AMIA Annu Symp Proc, 2019, 2019: 735-744.
|
12 |
王红燕, 马莉, 谷杨, 等. 加强超声医学质量控制 促进学科创新发发展 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(5): 321-326.
|
13 |
许强, 张其锐, 卢光明. 新一代医学影像人工智能临床转化现状与挑战 [J]. 中华放射学杂志, 2019, 53(11): 913-915.
|
14 |
Kalra A, Chakraborty A, Fine B, et al. Machine learning for automation of radiology protocols for quality and efficiency improvement [J]. J Am Coll Radiol, 2020, 17(9): 1149-1158.
|
15 |
Baumgartner CF, Kamnitsas K, Matthew J, et al. SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound [J]. IEEE Trans Med Imaging, 2017, 36(11): 2204-2215.
|
16 |
Cai Y, Sharma H, Chatelain P, et al. SonoEyeNet: standardized fetal ultrasound plane detection informed by eye tracking [J]. Proc IEEE Int Symp Biomed Imaging, 2018, 2018: 1475-1478.
|
17 |
Qu R, Xu G, Ding C, et al. Deep learning-based methodology for recognition of fetal brain standard scan planes in 2D ultrasound images [J]. IEEE Access, 2020, 8: 44443-44451.
|
18 |
Kim HP, Lee SM, Kwon JY, et al. Automatic evaluation of fetal head biometry from ultrasound images using machine learning [J]. Physiol Meas, 2019, 40(6): 065009.
|
19 |
Wu L, Cheng JZ, Li S, et al. FUIQA: fetal ultrasound image quality assessment with deep convolutional networks [J]. IEEE Trans Cybern, 2017, 47(5): 1336-1349.
|
20 |
Weiss DL, Langlotz CP. Structured reporting: patient care enhancement or productivity nightmare? [J]. Radiology, 2008, 249(3): 739-747.
|
21 |
Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications [J]. Radiographics, 2016, 36(1): 176-191.
|
22 |
Li J, Sang T, Yu WH, et al. The value of S-Detect for the differential diagnosis of breast masses on ultrasound: a systematic review and pooled meta-analysis [J]. Med Ultrason, 2020, 22(2): 211-219.
|
23 |
Zhao C, Xiao M, Jiang Y, et al. Feasibility of computer-assisted diagnosis for breast ultrasound: the results of the diagnostic performance of S-detect from a single center in China [J]. Cancer Manag Res, 2019, 11: 921-930.
|