切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (12) : 1140 -1146. doi: 10.3877/cma.j.issn.1672-6448.2021.12.004

心血管超声影像学

基于机器学习的三维超声心动图全自动测量左心室容积与功能的可行性研究
郑康超1, 包雨微1, 朱英1, 周玮1, 刘娅妮1,(), 邓又斌1   
  1. 1. 430030 武汉,华中科技大学同济医学院附属同济医院超声影像科
  • 收稿日期:2021-06-25 出版日期:2021-12-01
  • 通信作者: 刘娅妮

Feasibility of automated measurement of left ventricular volume and function using machine learning-based three-dimensional echocardiography

Kangchao Zheng1, Yuwei Bao1, Ying Zhu1, Wei Zhou1, Yani Liu1,(), Youbin Deng1   

  1. 1. Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
  • Received:2021-06-25 Published:2021-12-01
  • Corresponding author: Yani Liu
引用本文:

郑康超, 包雨微, 朱英, 周玮, 刘娅妮, 邓又斌. 基于机器学习的三维超声心动图全自动测量左心室容积与功能的可行性研究[J]. 中华医学超声杂志(电子版), 2021, 18(12): 1140-1146.

Kangchao Zheng, Yuwei Bao, Ying Zhu, Wei Zhou, Yani Liu, Youbin Deng. Feasibility of automated measurement of left ventricular volume and function using machine learning-based three-dimensional echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(12): 1140-1146.

目的

以心脏磁共振(CMR)为金标准,探讨基于机器学习的三维超声心动图(ML-3DE)全自动测量左心室容积和射血分数的准确性及影响因素分析。

方法

连续前瞻性地纳入2021年1月至2月于华中科技大学同济医学院附属同济医院行CMR的患者58例,在CMR检查后的24 h内采集三维超声心动图图像,采用ML-3DE全自动测量左心室容积与功能参数,包括左心室舒张末期容积(LVEDV)、左心室舒张末期容积指数(LVEDVi)、左心室收缩末期容积(LVESV)、左心室收缩末期容积指数(LVESVi)、每搏输出量(SV)及左心室射血分数(LVEF)。对ML-3DE的测值与CMR的测值进行相关性和一致性分析,单因素分析及逐步多元线性回归分析探讨左心室结构与功能的异常特征(非对称性左心室肥厚、LVEF减低、左心室扩大、节段性室壁运动异常)对ML-3DE与CMR测值差异(ΔLVEDV、ΔLVESV)的影响。

结果

53例(91%)患者完成了ML-3DE对左心室容积与功能的定量分析。ML-3DE测量的左心室各参数指标组内相关系数(ICC)值均>0.85。左心室各参数测值的ML-3DE与CMR测量值均具有中等以上相关性(LVEDV、LVEDVi、LVESV、LVESVi的相关性系数r=0.94、0.91、0.95、0.93;而LVEF、SV的相关性系数r=0.65、0.61;P均<0.01)。Bland-Altman法表明2种方法测值一致性较高(90%数据位于Bland-Altman95%一致性区间内),但ML-3DE测量的左心室容积参数(LVEDV和LVESV)呈不同程度的低估,与CMR测值比较,差异有统计学意义(P均<0.05)。逐步多元线性回归分析发现,LVEF减低、左心室扩大、非对称性左心室肥厚是ML-3DE与CMR测量LVEDV差异的独立影响因素;非对称性左心室肥厚、节段性室壁运动异常是ML-3DE与CMR测量LVESV差异的独立影响因素。

结论

ML-3DE实现了左心室容积与功能参数的全自动定量分析,与CMR金标准具有较好的相关性和一致性;LVEF减低、左心室扩大、非对称性左心室肥厚、节段性室壁运动异常是ML-3DE与CMR左心室容积测量差异的独立影响因素。

Objective

To investigate the accuracy and influencing factors of fully automatic measurement of left ventricular volume and ejection fraction by machine learning-based three-dimensional echocardiography (ML-3DE) with cardiac magnetic resonance (CMR) as the gold standard.

Methods

Fifty-eight patients who were underwent CMR at Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology from January 2021 to February 2021 were prospectively enrolled. Three-dimensional echocardiography was performed within 24 hours after CMR in the 58 patients. Then, ML-3DE was used to automatically measure left ventricular volume and functional parameters, including left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic volume index (LVEDVi), left ventricular end-systolic volume (LVESV), left ventricular end-systolic volume index (LVESVi), stroke volume (SV), and left ventricular ejection fraction (LVEF). Pearson correlation and Bland-Altman analyses were performed to compare the LV measurements derived from AI-based 3DE and CMR. Univariate analysis and stepwise multiple linear regression analysis were used to investigate the effects of abnormal characteristics of left ventricular structure and function (asymmetric left ventricular hypertrophy, reduced LVEF, left ventricular enlargement, and segmental wall motion abnormalities) on the differences between ML-3DE and CMR (ΔLVEDV and ΔLVESV).

Results

Fully automatic measurement of left ventricular volume and function by ML-3DE was performed in 53 (91%) patients. The interclass correlation coefficient (ICC) of left ventricular parameters measured by ML-3DE was >0.85. The LV parameters measured by the two methods had moderate correlations; the correlation coefficients of LVEDV, LVEDVi, LVESV, and LVESVi were 0.94, 0.91, 0.95, and 0.93, while the correlation coefficients of LVEF and SV were 0.65 and 0.61, respectively (P<0.01). Although Bland-Altman analysis showed a good consistency between the two methods (90% of the data were located in the 95% limits of agreement), the left ventricular volumes (LVEDV and LVESV) measured by ML-3DE were underestimated, which were statistically different from those measured by CMR (P <0.05). Stepwise multiple linear regression analysis showed that the reduced ejection fraction, dilated left ventricle, and asymmetric left ventricular hypertrophy were independent factors affecting the difference of LVEDV measured by CMR and ML-3DE, and the asymmetric left ventricular hypertrophy and segmental wall motion abnormality were independent impact factors affecting the difference of LVEDV measured by CMR and ML-3DE.

Conclusion

ML-3DE allows for fully automatic quantitative analysis of left ventricular volume and function, showing a close correlation and consistency with CMR (gold standard). Reduced LVEF, left ventricular enlargement, asymmetric left ventricular hypertrophy, and segmental wall motion abnormality are independent factors affecting the difference in LV volume measurements between ML-3DE and CMR.

表1 基于机器学习的三维超声心动图与心脏磁共振测量左心室容积参数和射血分数的比较[MP25P75)]
图1 心脏磁共振与基于机器学习的三维超声心动图测量左心室容积及射血分数相关参数的Bland-Altman一致性分析图
表2 左心室结构与功能的异常特征对ΔLVESV、ΔLVESV影响的单因素分析结果[MP25P75)]
表3 影响ΔLVEDV的多元逐步线性回归分析
表4 影响ΔLVESV的多元逐步线性回归分析
1
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J]. J Am Soc Echocardiogr, 2015, 28(1): 1-39.
2
Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm [J]. JACC Cardiovasc Imaging, 2016, 9(7): 769-782.
3
王江涛, 吴小朋, 蔡绮哲, 等. 三维超声心动图自动定量分析左心功能的研究进展 [J]. 临床超声医学杂志, 2020, 22(10): 768-771.
4
Levy F, Dan SE, Iacuzio L, et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance [J]. Arch Cardiovasc Dis, 2017, 110(11): 580-589.
5
Amadieu R, Hadeed K, Jaffro M, et al. Feasibility of new transthoracic three-dimensional echocardiographic automated software for left heart chamber quantification in children [J]. J Am Soc Echocardiogr, 2019, 32(1): 121-134.
6
中华医学会心血管病学分会中国成人肥厚型心肌病诊断与治疗指南编写组, 中华心血管病杂志编辑委员会. 中国成人肥厚型心肌病诊断与治疗指南 [J]. 中华心血管病杂志, 2017, 45(12): 1015-1032.
7
Alkema M, Spitzer E, Soliman OI, et al. Multimodality imaging for left ventricular hypertrophy severity grading: a methodological review [J]. J Cardiovasc Ultrasound, 2016, 24(4): 257-267.
8
Dorosz JL, Lezotte DC, Weitzenkamp DA, et al. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis [J]. J Am Coll Cardiol, 2012, 59(20): 1799-1808.
9
刘梦怡, 吴伟春. 人工智能在超声心动图中的应用现状及进展 [J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 216-219.
10
Levy F, Iacuzio L, Schouver ED, et al. Performance of a new fully automated transthoracic three-dimensional echocardiographic software for quantification of left cardiac chamber size and function: comparison with 3 Tesla cardiac magnetic resonance [J]. J Clin Ultrasound, 2019, 47(9): 546-554.
11
Otani K, Nakazono A, Salgo IS, et al. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation [J]. J Am Soc Echocardiogr, 2016, 29(10): 955-965.
12
Tamborini G, Piazzese C, Lang RM, et al. Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two-dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging [J]. J Am Soc Echocardiogr, 2017, 30(11): 1049-1058.
13
Yang LT, Nagata Y, Otani K, et al. Feasibility of one-beat real-time full-volume three-dimensional echocardiography for assessing left ventricular volumes and deformation parameters [J]. J Am Soc Echocardiogr, 2016, 29(9): 853-860.
14
Kitano T, Nabeshima Y, Otsuji Y, et al. Accuracy of left ventricular volumes and ejection fraction measurements by contemporary three-dimensional echocardiography with semi- and fully automated software: systematic review and meta-analysis of 1,881 subjects [J]. J Am Soc Echocardiogr, 2019, 32(9): 1105-1115.
15
Almeida N, Papachristidis A, Pearson P, et al. Left atrial volumetric assessment using a novel automated framework for 3D echocardiography: a multi-centre analysis [J]. Eur Heart J Cardiovasc Imaging, 2017, 18(9): 1008-1015.
16
Cai Q, Wang J, Li H, et al. Measurement of left ventricular volumes and ejection fraction in patients with regional wall motion abnormalities using an automated 3D quantification algorithm [J]. Ultrasound Med Biol, 2018, 44(11): 2274-2282.
17
Thavendiranathan P, Liu S, Verhaert D, et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation [J]. JACC Cardiovasc Imaging, 2012, 5(3): 239-251.
18
苏亚芬, 方小梅, 韩薇, 等. 心脏超声造影在肥厚型心肌病冠状动脉微循环功能评价中的应用及影响因素 [J/OL]. 中华医学超声杂志(电子版), 2020, 17(4): 341-346.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[3] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[4] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[5] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[13] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[14] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要