切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (03) : 206 -211. doi: 10.3877/cma.j.issn.1672-6448.2022.03.004

浅表器官超声影像学

基于深度学习的甲状腺结节超声图像分割的临床应用
广旸1, 何文1,(), 吴佳俊2, 赵明昌2, 张雨康1, 万芳1   
  1. 1. 100070 首都医科大学附属北京天坛医院超声科
    2. 214028 江苏无锡,无锡祥生医疗科技股份有限公司研发中心算法部
  • 收稿日期:2022-01-04 出版日期:2022-03-01
  • 通信作者: 何文
  • 基金资助:
    国家自然科学基金青年基金(81901744); 北京市自然科学基金(7204255)

Clinical application of deep learning based ultrasound segmentation of thyroid nodules

Yang Guang1, Wen He1,(), Jiajun Wu2, Mingchang Zhao2, Yukang Zhang1, Fang Wan1   

  1. 1. Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
    2. Algorithm Department of the Research & Development Center, CHISON Medical Technologies Co., Ltd., Wuxi 214028, China
  • Received:2022-01-04 Published:2022-03-01
  • Corresponding author: Wen He
引用本文:

广旸, 何文, 吴佳俊, 赵明昌, 张雨康, 万芳. 基于深度学习的甲状腺结节超声图像分割的临床应用[J/OL]. 中华医学超声杂志(电子版), 2022, 19(03): 206-211.

Yang Guang, Wen He, Jiajun Wu, Mingchang Zhao, Yukang Zhang, Fang Wan. Clinical application of deep learning based ultrasound segmentation of thyroid nodules[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(03): 206-211.

目的

探讨深度学习方法在超声甲状腺结节分割中的效果及其临床应用价值。

方法

收集2018年8月至2020年10月首都医科大学附属北京天坛医院的166例甲状腺结节患者的1044张超声图像。观察使用改进自注意力机制的Unet深度学习方法和Unet基础方法在测试数据集上的分割效果。以分割结果是否接近有多年临床经验的超声医师的手动标注作为参考标准,将改进自注意力机制的Unet和Unet基础方法对甲状腺结节的分割效果进行比较,以交并比(IoU)、戴斯(Dice)相似性系数及与超声医师对甲状腺结节的手动勾勒接近程度来评价深度学习模型对甲状腺结节分割效果及临床应用价值的性能。

结果

改进自注意力机制的Unet深度学习模型对甲状腺结节分割的IoU及Dice系数分别为0.815和0.839,与Unet基础方法结果(IoU为0.788,Dice系数为0.817)相比,具有更高的IoU和Dice系数值。从分割图像可以看出,基于改进自注意力机制的Unet深度学习模型对甲状腺结节整体和边缘细节上的分割效果好于Unet基础方法,更接近于超声医师的手动勾勒结果。

结论

基于自注意力机制的Unet深度学习模型在甲状腺结节分割方面有着较高的性能,可提高诊断效率,并且该方法具有一定的临床应用价值。

Objective

To explore the clinical application value of deep learning based ultrasonic thyroid nodule segmentation.

Methods

We selected 1044 ultrasound images of 166 thyroid patients collected from Beijing Tiantan Hospital Affiliated to Capital Medical University from August 2018 to October 2020. The segmentation effect of Unet with improved self-attention mechanism and control Unet-based method was assessed using test datasets. Whether the segmentation result is close to the manual annotation by a sonographer with many years of clinical experience was used as a reference standard, and the Unet and Unet-based methods with improved self-attention mechanism were compared for the segmentation effect of thyroid nodules, using IoU (intersection and union ratio), Dice (Dice similarity coefficient), and the degree of closeness to the manual outline of thyroid nodules by the sonographer to evaluate the performance and clinical value of the deep learning model for thyroid nodule segmentation.

Results

The IoU and Dice coefficients of thyroid nodule segmentation by Unet with improved self-attention mechanism were 0.815 and 0.839, respectively, which were higher than those of Unet (IoU=0.788, Dice=0.817). It can also be seen from the segmented images that the Unet based on the improved self-attention mechanism had a better segmentation effect on the overall and edge details of thyroid nodules than the Unet-based method, and was closer to the manual outline results of the sonographer.

Conclusion

Unet based on self-attention mechanism has good performance in thyroid nodule segmentation, which can improve the diagnostic efficiency, the method also has clinical application value.

图1 基于神经网络的深度学习方法的整体网络结构图以及模块
图2 甲状腺结节超声图像及各方法得到的甲状腺结节区域分割图像对比。图中第1列为甲状腺结节超声图像,第2列为医师给定的甲状腺结节区域标注结果,第3列为基础方法得到的甲状腺结节区域分割结果,第4列为本文提出的改进自注意力机制的Unet深度学习方法得到的甲状腺结节区域分割结果
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3):209-249.
2
Li Y, Teng D, Ba J, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of mainland China [J]. Thyroid, 2020, 30(4): 568-579.
3
Kitahara CM, Sosa JA. The changing incidence of thyroid cancer [J]. Nat Rev Endocrinol, 2016, 12(11): 646-653.
4
Savelonas MA, Iakovidis DK, Legakis I, et al. Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images [J]. IEEE Trans InfTechnol Biomed, 2009, 13(4): 519-527.
5
许敏, 韩峰, 罗晓, 等. 计算机辅助诊断系统鉴别甲状腺结节良恶性的诊断效能及其影响因素 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(4): 252-256.
6
Narayan NS, Marziliano P, Kanagalingam J, et al. Speckle patch similarity for echogenicity-based multiorgan segmentation in ultrasound images of the thyroid gland [J]. IEEE J Biomed Health, 2017, 21(1): 172-183.
7
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA: IEEE, 2016: 770-778.
8
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, California, USA: AAAI, 2017: 4278-4284.
9
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation [C]// International Conference on Medical image computing and computer-assisted intervention. Springer: Cham, 2015: 234-241.
10
Isensee F, Petersen J, Kohl SAA, et al. nnU-net: breaking the spell on successful medical image segmentation [BD/OL]. arXiv: 1904.08128v1, 2019. [2021-12-20].

URL    
11
Chen J, You H, Li K. A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images [J]. Comput Meth Prog Bio, 2020, 185: 105329.
12
Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks [J]. Med Image Anal, 2019, 58: 101555.
13
Wildman-Tobriner B, Buda M, Hoang JK, et al. Using artificial intelligence to revise ACR TI-RADS risk stratification of thyroid nodules: diagnostic accuracy and utility [J]. Radiology, 2019, 292(1): 112-119.
14
倪炯, 王培军. 医学影像人工智能的现状与未来 [J]. 中华医学杂志, 2021, 101(7): 455-457.
15
王洪杰, 于霞, 高强. 基于深度学习的甲状腺结节自动识别方法在超声图像中的应用 [J]. 中国医疗设备, 2019, 34(10): 72-74, 78.
16
Choi YJ, Baek JH, Park HS, et al. A Computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment [J]. Thyroid, 2017, 27(4): 546-552.
17
方明娣, 彭梅, 毕玉. 人工智能S-Detect技术结合钙化特征对甲状腺结节的诊断价值 [J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 177-181.
18
Wang L, Zhang L, Zhu M, et al. Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks [J]. Med Image Anal, 2020, 61: 101665.
19
Huang Q, Luo Y, Zhang Q. Breast ultrasound image segmentation: a survey [J]. Int J Comput Ass Rad, 2017, 12(3): 493-507.
20
Akkus Z, Cai J, Boonrod A, et al. A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow [J]. J Am CollRadiol. 2019, 16(9): 1318-1328.
21
Zhang H, Cisse M, Dauphin Y N, et al. mixup: Beyond empirical risk minimization [Z/OL]. arXiv:1710.09412, 2017. [2021-12-20].

URL    
22
Bochkovskiy A, Wang CY, Liao HYM. Yolov4: Optimal speed and accuracy of object detection [Z/OL]. arXiv:2004.10934, 2020. [2021-12-20].

URL    
23
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [Z/OL]. arXiv:1706.03762, 2017. [2021-12-20].

URL    
24
陈晨, 孙鹏飞, 郭君, 等. 人工智能在甲状腺结节良恶性中的诊断价值 [J]. 中国超声医学杂志, 2020, 36(7): 585-588.
25
王波, 李梦翔, 刘侠. 基于改进U-Net网络的甲状腺结节超声图像分割方法 [J/OL]. 电子与信息学报, doi: 10.11999/JEIT210015. (2021-06-01).

URL    
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[3] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[4] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[5] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[6] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[7] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[8] 包艳娟, 杨小红, 张涛, 赵胜, 张莉. 阴道斜隔综合征的超声诊断与临床分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 859-864.
[9] 汪洪斌, 张红霞, 何文, 杜丽娟, 程令刚, 张雨康, 张萌. 低级别阑尾黏液性肿瘤与阑尾黏液腺癌超声及超声造影特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 865-871.
[10] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[11] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[12] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[13] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[14] 张晓燕, 武玺宁, 张一休, 刘真真, 孝梦甦, 李建初. 超声医学科人文素养教育提升医患沟通能力的调查分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 899-903.
[15] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?