切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (01) : 51 -56. doi: 10.3877/cma.j.issn.1672-6448.2023.01.009

妇产科超声影像学

卵巢-附件报告与数据系统在超声诊断卵巢-附件肿块良恶性中的价值
许彩1, 周苑1, 赵胜1, 崔新伍2,()   
  1. 1. 430070 武汉,湖北省妇幼保健院超声科
    2. 430030 武汉,华中科技大学同济医学院附属同济医院超声科
  • 收稿日期:2021-01-29 出版日期:2023-01-01
  • 通信作者: 崔新伍

Value of ovarian-adnexal reporting and data system in differential diagnosis of benign and malignant adnexal masses

Cai Xu1, Yuan Zhou1, Sheng Zhao1, Xinwu Cui2,()   

  1. 1. Department of Ultrasonography, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
    2. Department of Ultrasonography, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
  • Received:2021-01-29 Published:2023-01-01
  • Corresponding author: Xinwu Cui
引用本文:

许彩, 周苑, 赵胜, 崔新伍. 卵巢-附件报告与数据系统在超声诊断卵巢-附件肿块良恶性中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(01): 51-56.

Cai Xu, Yuan Zhou, Sheng Zhao, Xinwu Cui. Value of ovarian-adnexal reporting and data system in differential diagnosis of benign and malignant adnexal masses[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(01): 51-56.

目的

探讨美国放射学会卵巢-附件报告与数据系统(O-RADS)在卵巢-附件肿块超声诊断中的价值。

方法

本研究为回顾性诊断试验。对象为2019年1月至2020年12月在湖北省妇幼保健院进行手术且有病理结果的卵巢或附件肿块患者441例,患者术前均行超声检查。参照O-RADS分类标准对每个卵巢及附件区肿块进行O-RADS恶性风险分层。绘制受试者工作特征(ROC)曲线分析O-RADS分类法诊断卵巢-附件肿块良恶性的诊断价值,最后以病理诊断为参考标准,绘制诊断四格表分析该分类诊断系统的有效性。

结果

441例肿块中良性353例,恶性88例。O-RADS 2-5类中,其恶性肿块分别占1.1%、3.7%、47.8%、91.1%。O-RADS分类法诊断卵巢-附件肿块良恶性的ROC曲线下面积为0.947,95%可信区间为0.919~0.975,良恶性截断值为3.5。当将O-RADS 4和5类作为恶性肿块的预测指标时,其诊断卵巢-附件肿块良恶性的敏感度、特异度、阳性预测值、阴性预测值、阳性似然比、阴性似然比及约登指数分别为94.3%、88.6%、67.5%、98.4%、8.27、0.06、0.82。当只将O-RADS 5类作为恶性肿块的预测指标时,其诊断卵巢-附件肿块良恶性的敏感度、特异度、阳性预测值、阴性预测值、阳性似然比、阴性似然比及约登指数分别为57.9%、98.6%、91.1%、90.3%、41.36、0.43、0.57。

结论

O-RADS可作为超声诊断卵巢-附件肿块良恶性的可靠方法,建议以O-RADS 4和5类为预测卵巢-附件肿块恶性的指标。

Objective

To evaluate the performance of the American College of Radiology ovarian-adnexal reporting and data system (O-RADS) in the diagnosis of adnexal masses (AMs) by pelvic ultrasound.

Methods

This retrospective study included 441 patients with AMs who underwent surgery and had pathological diagnosis at the Maternal and Child Health Hospital of Hubei Province from January 2019 to December 2020. All patients were detected by ultrasound before surgery, and AMs were categorized into four categories according to the O-RADS classification. The value of O-RADS classification for the diagnosis of benign and malignant AMs was then assessed by receiver operating characteristic (ROC) curve analysis. Using histopathology as the reference standard, the diagnostic performance of O-RADS for detecting malignant AMs was calculated. The four-grid table was used to analyze the validity of the system.

Results

A total of 441 AMs were evaluated: 88 were malignant and 353 were benign. Malignant tumors accounted for 1.1%, 3.7%, 47.8%, and 91.1% of O-RADS 2, 3, 4, and 5 AMs, respectively. The area under the ROC of O-RADS classification was 0.947 (95% confidence interval: 0.919-0.975). The best cutoff value for predicting malignant AMs was 3.5. When considering both O-RADS 4 and 5 as predictors of malignancy, the sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, and Youden index of O-RADS were 94.3%, 88.6%, 67.5%, 98.4%, 8.27, 0.06, and 0.82, respectively. When considering only O-RADS 5 as a predictor of malignancy, the sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, and Yoden index of O-RADS were 57.9%, 98.6%, 91.1%, 90.3%, 41.36, 0.43, and 0.57, respectively.

Conclusion

O-RADS can be used as a reliable method for the differential diagnosis of benign and malignant AMs. Both O-RADS 4 and 5 should be used as predictors of malignancy.

图1 卵巢附件报告与数据系统(O-RADS)2~5类病变超声声像图。图a:O-RADS 2类,病理诊断为卵巢黏液性囊腺瘤;图b:O-RADS 3类,病理诊断为卵巢浆液性囊腺瘤;图c:O-RADS 4类,病理诊断为卵巢交界性子宫内膜样肿瘤;图d:O-RADS 5类,病理诊断为卵巢颗粒细胞瘤
图2 超声诊断典型良性病变误诊病例。图a:超声诊断为皮样囊肿,病理诊断为畸胎瘤恶变,恶变成分为角化型鳞状细胞癌;图b:超声诊断为子宫内膜异位囊肿,病理诊断为浆液性腺癌;图c病理图示:畸胎瘤恶变,恶变成分为角化型鳞状细胞癌(HE×100)
图3 卵巢-附件报告与数据系统分类诊断卵巢-附件肿块良恶性的受试者操作特征曲线
表1 O-RADS_1分类结果与病理诊断比较(例)
表2 O-RADS_2分类结果与病理诊断比较(例)
1
Baker VV. Treatment options for ovarian cancer [J]. Clin Obstet Gynecol, 2001, 44(3): 522-530.
2
Timmerman D, Valentin L, Bourne TH, et al. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group [J]. Ultrasound Obstet Gynecol, 2000, 16(5): 500-505.
3
Timmerman D, Testa AC, Bourne T, et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer [J]. Ultrasound Obstet Gynecol, 2008, 31(6): 681-690.
4
Timmerman D, Van Calster B, Testa A, et al. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group [J]. Am J Obstet Gynecol, 2016, 214(4): 424-437.
5
Timmerman D, Van Calster B, Testa AC, et al. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group [J]. Ultrasound Obstet Gynecol, 2010, 36(2): 226-234.
6
Sayasneh A, Ferrara L, De Cock B, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model: a multicentre external validation study [J]. Br J Cancer, 2016, 115(5): 542-548.
7
Araujo KG, Jales RM, Pereira PN, et al. Performance of the IOTA ADNEX model in preoperative discrimination of adnexal masses in a gynecological oncology center [J]. Ultrasound Obstet Gynecol, 2017, 49(6): 778-783.
8
Andreotti RF, Timmerman D, Strachowski LM, et al. O-RADS US risk stratification and management system: a consensus guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee [J]. Radiology, 2020, 294(1): 168-185.
9
Andreotti RF, Timmerman D, Benacerraf BR, et al. Ovarian-adnexal reporting lexicon for ultrasound: a white paper of the ACR Ovarian-Adnexal Reporting and Data System Committee [J]. J Am Coll Radiol, 2018, 15(10): 1415-1429.
10
王宁, 刘硕, 杨雷, 等. 2018全球癌症统计报告解读 [J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 87-97.
11
周琳, 何秀萍. 卵巢癌形成、诊断及治疗的研究进展 [J]. 中国生育健康杂志, 2018, 29(5): 491-493.
12
An JY, Unsdorfer KML, Weinreb JC. BI-RADS, C-RADS, CAD-RADS, LI-RADS, Lung-RADS, NI-RADS, O-RADS, PI-RADS, TI-RADS: reporting and data systems [J]. Radio Graphics, 2019, 39(5): 1435-1436.
13
Basha MAA, Metwally MI, Gamil SA, et al. Comparison of O-RADS, GI-RADS, and IOTA simple rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses [J]. Eur Radiol, 2021, 31(2): 674-684.
14
Amor F, Vaccaro H, Alcázar JL, et al. Gynecologic imaging reporting and data system [J]. J Ultrasound Med, 2009, 28(3): 285-291.
15
白博, 韩慧娟, 周毓青. IOTA简易原则预测卵巢肿瘤良恶性的临床价值研究 [J/CD]. 中华医学超声杂志(电子版), 2018, 15(8): 620-622.
16
Tinnangwattana D, Vichak-Ururote L, Tontivuthikul P, et al. IOTA simple rules in differentiating between benign and malignant adnexal masses by non-expert examiners [J]. Asian Pac J Cancer Prev, 2015, 16(9): 3835-3838.
17
Thomassin-Naggara I, Poncelet E, Jalaguier-Coudray A, et al. Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses [J]. JAMA Netw Open, 2020, 3(1): e1919896.
18
Basha MAA, Refaat R, Ibrahim SA, et al. Gynecology Imaging Reporting and Data System (GI-RADS): diagnostic performance and inter-reviewer agreement [J]. Eur Radiol, 2019, 29(11): 5981-5990.
19
Valentin L, Ameye L, Franchi D, et al. Risk of malignancy in unilocular cysts: a study of 1148 adnexal masses classified as unilocular cysts at transvaginal ultrasound and review of the literature [J]. Ultrasound Obstet Gynecol, 2013, 41(1): 80-89.
20
Vernooij F, Heintz P, Witteveen E, et al. The outcomes of ovarian cancer treatment are better when provided by gynecologic oncologists and in specialized hospitals: a systematic review [J]. Gynecol Oncol, 2007, 105(3): 801-812.
21
Chan JK, Kapp DS, Shin JY, et al. Influence of the gynecologic oncologist on the survival of ovarian cancer patients [J]. Obstet Gynecol, 2007, 109(6): 1342-1350.
[1] 陈永庄, 莫小乔, 谢天. 心血管事件患者术后30 d死亡风险决策树模型的构建与评估——基于少数类样本合成过采样技术算法[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 390-398.
[2] 李圣鹏, 方爱蓝, 刘诗宁, 王丹, 刘湘奇. 下颌阻生第三磨牙拔除难度的预测因素与评估方法[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 441-445.
[3] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[6] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[7] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[8] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[9] 张郁妍, 胡滨, 张伟红, 徐楣, 朱慧, 羊馨玥, 刘海玲. 妊娠中期心血管超声参数与肝功能的相关性及对不良妊娠结局的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 499-504.
[10] 王小娜, 谭微, 李悦, 姜文艳. 预测性护理对结直肠癌根治术患者围手术期生活质量、情绪及并发症的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 525-529.
[11] 孙旻. 血液淀粉酶、C反应蛋白、降钙素原及乳酸脱氢酶在急性胰腺炎患者病情评价及预后预测中的价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 331-336.
[12] 马强, 李军, 苟丽娟. 重症急性胰腺炎miR-21-3p、RUNX3表达水平及对病情发展程度的预测[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 337-341.
[13] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
[14] 程培丽, 李霞, 王亚丽. 孤立性脑桥梗死合并吞咽障碍的临床影响因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 440-444.
[15] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
阅读次数
全文


摘要