切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (07) : 755 -760. doi: 10.3877/cma.j.issn.1672-6448.2023.07.015

头颈部超声影像学

超声造影在脑胶质瘤切除术术中的应用价值
王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华()   
  1. 150001 哈尔滨医科大学附属第一医院群力超声科
  • 收稿日期:2022-01-01 出版日期:2023-07-01
  • 通信作者: 杨秀华

Application value of intraoperative contrast-enhanced ultrasound in surgical resection of glioma

Hanyu Wang, Sike Zhang, Yu Zhang, Xin Wan, Qiuxia He, Mingming Li, Xiuhua Yang()   

  1. Department of Ultrasonography, Qunli Hospital of the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2022-01-01 Published:2023-07-01
  • Corresponding author: Xiuhua Yang
引用本文:

王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.

Hanyu Wang, Sike Zhang, Yu Zhang, Xin Wan, Qiuxia He, Mingming Li, Xiuhua Yang. Application value of intraoperative contrast-enhanced ultrasound in surgical resection of glioma[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(07): 755-760.

目的

评估超声造影在脑胶质瘤切除术术中的应用价值。

方法

选取2020年9月至2021年7月于哈尔滨医科大学附属第一医院神经外科行脑胶质瘤切除术的27例患者(术前MRI诊断为脑胶质瘤),所有患者术中均行二维超声及超声造影检查,以术后病理作为诊断金标准,明确脑胶质瘤病理类型。采用随机区组设计方差分析比较高级别脑胶质瘤的肿瘤组织、正常脑组织和供血动脉超声造影参数[开始强化时间(TTS)、达峰时间(TTP)、峰值强度(API)]的差异,组间多重比较采用Tukey HSD检验;采用配对t检验比较低级别脑胶质瘤的肿瘤组织和正常脑组织超声造影参数的差异。

结果

27例脑胶质瘤患者中,根据术后病理回报,其中高级别脑胶质瘤16例,低级别脑胶质瘤11例。在高级别脑胶质瘤中,肿瘤组织的TTS为(30.94±2.11)s、TTP为(45.04±2.74)s、API为(79.56±7.35)dB;主要供血动脉的TTS为(28.88±1.54)s、TTP为(43.04±2.85)s、API为(134.27±14.57)dB;正常脑组织的TTS为(35.88±2.16)s、TTP为(46.41±2.75)s、API为(48.02±4.79)dB;高级别脑胶质瘤肿瘤组织的TTS、TTP低于正常脑组织、高于主要供血动脉,API高于正常脑组织、低于主要供血动脉,差异均具有统计学意义(P均<0.001)。在低级别脑胶质瘤中,肿瘤组织的TTS为(23.62±1.90)s、TTP为(35.66±2.38)s、API为(103.67±7.32)dB;正常脑组织的TTS为(27.97±2.23)s、TTP为(44.11±4.68)s、API为(67.27±11.59)dB;低级别脑胶质瘤肿瘤组织的TTS、TTP低于正常脑组织,API高于正常脑组织,差异均具有统计学意义(t=-14.80、-7.41、8.67,P均<0.001)。

结论

术中超声造影可为脑胶质瘤定位及切除范围的确定提供帮助,可最大限度提高肿瘤切除范围。

Objective

To investigate the application value of intraoperative contrast-enhanced ultrasound (CEUS) in surgical resection of glioma.

Methods

A total of 27 patients who underwent glioma resection at Neurosurgery Department of the First Affiliated Hospital of Harbin Medical University from September 2020 to July 2021 (diagnosed as having glioma by MRI before surgery) were selected. All patients underwent intraoperative two-dimensional ultrasound and CEUS. Postoperative pathology was used as the diagnostic gold standard to define the pathological type of glioma. Random block design analysis of variance was used to compare CEUS parameters between tumor tissue, normal brain tissue, and the blood supplying arteries of high-grade glioma. Tukey HSD test was used for multiple comparisons among groups. Paired t test was used for comparison of CEUS parameters between the normal brain tissue and tumor tissue of low-grade glioma.

Results

Among the 27 patients with glioma, 16 had high-grade glioma and 11 had low-grade glioma according to postoperative pathology. In high-grade glioma, the time to start (TTS), time to peak (TTP), and absolute peak intensity (API) were (30.94±2.11) s, (45.04±2.74) s, and (79.56±7.35) dB, respectively. The TTS, TTP, and API of the main supplying arteries were (28.88±1.54) s, (43.04±2.85) s, and (134.27±14.57) dB, respectively. The TTS, TTP, and API of normal brain tissue were (35.88±2.16) s, (46.41±2.75) s, and (48.02±4.79) dB, respectively. The TTS and TTP of high-grade glioma tumor tissue were significantly lower than those of normal brain tissue and higher than those of the main supplying arteries, and the API was significantly higher than that of normal brain tissue and lower than that of the main supplying arteries (P<0.001). In low-grade glioma, the TTS, TTP, and API were (23.62±1.90) s, (35.66±2.38) s, and (103.67±7.32) dB, respectively. The TTS, TTP, and API of normal brain tissue were (27.97±2.23) s, (44.11±4.68) s, and (67.27±11.59) dB, respectively. The TTS and TTP of low-grade glioma tumor tissue were significantly lower than those of normal brain tissue, while the API of low-grade glioma tumor tissue was significantly higher than that of normal brain tissue (t=-14.80, -7.41, and 8.67, respectively, P<0.001 for all).

Conclusion

Intraoperative CEUS can contribute to the localization of glioma and the determination of the extent of resection (EOR), thus providing valuable information for surgeons, maximizing the EOR of the tumor, and prolonging the survival of patients.

图1 高级别脑胶质瘤术中超声声像图。脑胶质瘤呈稍高于正常脑组织的均质回声,较难与正常脑组织辨别
图2 高级别脑胶质瘤的术中超声造影图像。可见肿瘤组织呈高增强,边界清晰(蓝色箭头),内部可见未增强坏死区(绿色箭头),下方侧脑室(黄色星星)未见强化
图3 脑胶质瘤切除后术中超声及超声造影检查图像。图a:左侧颞枕部及丘脑胶质瘤切除术后,术中超声扫查残腔,可见残腔周边一大小约14.3 mm×11.1 mm的略高回声区(黄色箭头),边界欠清晰,为确认是否为残余肿瘤组织行术中超声造影检查。图b:行术中超声造影后,箭头所指处未见造影剂灌注,考虑该处异常回声并非残余肿瘤组织,后术者探查残腔,证实其为术中止血使用的明胶海绵
图4 高级别脑胶质瘤术中超声及超声造影表现。图a为高级别脑胶质瘤术中超声造影图像,感兴趣区域(ROI)1(红色圆圈)为供血动脉,ROI 2(黄色圆圈)、ROI 3(绿色圆圈)为肿瘤组织,ROI 4(蓝色圆圈)为周围正常脑组织;图b为高级别脑胶质瘤术中二维灰阶超声图像,肿瘤组织与周围正常脑组织分界模糊;图c为高级别脑胶质瘤超声造影时间-强度曲线图像,可见供血动脉显著快进,且呈明显高增强,且2处肿瘤组织ROI的开始强化时间、达峰时间均低于正常脑组织,峰值强度均高于正常脑组织
表1 高级别脑胶质瘤及其供血动脉与正常脑组织间的超声造影时间-强度曲线指标比较(
x¯
±s
表2 低级别脑胶质瘤与正常脑组织间的超声造影时间-强度曲线指标比较(
x¯
±s
图5 低级别脑胶质瘤术中超声表现。图a为低级别脑胶质瘤术中超声造影图像,可见肿瘤组织增强高于周围正常脑组织;图b为低级别脑胶质瘤术中二维灰阶超声图像,红色为感兴趣区域(ROI)1,代表肿瘤组织,黄色为ROI 2,代表正常脑组织;图c为相应的色彩叠加图像;图d为超声造影相应时间-强度曲线,红色ROI 1对应为肿瘤组织,黄色ROI 2对应为正常脑组织,可见肿瘤组织的开始强化时间、达峰时间均低于正常脑组织,峰值强度高于正常脑组织
1
Cheng LG, He W, Zhang HX, et al. Intraoperative contrast enhanced ultrasound evaluates the grade of glioma [J]. Biomed Res Int, 2016, 2016: 2643862.
2
Della Pepa GM, Ius T, La Rocca G, et al. 5-Aminolevulinic acid and contrast-enhanced ultrasound: the combination of the two techniques to optimize the extent of resection in glioblastoma surgery [J]. Neurosurgery, 2020, 86(6): E529-E540.
3
Ritschel K, Pechlivanis I, Winter S. Brain tumor classification on intraoperative contrast-enhanced ultrasound [J]. Int J Comput Assist Radiol Surg, 2015, 10(5): 531-540.
4
Prada F, Mattei L, Del Bene M, et al. Intraoperative cerebral glioma characterization with contrast enhanced ultrasound [J]. Biomed Res Int, 2014, 2014: 484261.
5
Gildenberg PL, Woo SY. Multimodality program involving stereotactic surgery in brain tumor management [J]. Stereotact Funct Neurosurg, 2000, 75(2-3): 147-152.
6
Duffau H. New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity--a review [J]. J Neurooncol, 2006, 79(1): 77-115.
7
Haider SA, Lim S, Kalkanis SN, et al. The impact of 5-aminolevulinic acid on extent of resection in newly diagnosed high grade gliomas: a systematic review and single institutional experience [J]. J Neurooncol, 2019, 141(3): 507-515.
8
Wei L, Roberts DW, Sanai N, et al. Visualization technologies for 5-ALA-based fluorescence-guided surgeries [J]. J Neurooncol, 2019, 141(3): 495-505.
9
Morshed RA, Young JS, Han SJ, et al. Perioperative outcomes following reoperation for recurrent insular gliomas [J]. J Neurosurg, 2018, 131(2): 467-473.
10
Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art [J]. Nat Rev Clin Oncol, 2018, 15(2): 112-125.
11
Dallabona M, Sarubbo S, Merler S, et al. Impact of mass effect, tumor location, age, and surgery on the cognitive outcome of patients with high-grade gliomas: a longitudinal study [J]. Neurooncol Pract, 2017, 4(4): 229-240.
12
Spena G, D'Agata F, Panciani PP, et al. Practical prognostic score for predicting the extent of resection and neurological outcome of gliomas in the sensorimotor area [J]. Clin Neurol Neurosurg, 2018, 164: 25-31.
13
Nossek E, Korn A, Shahar T, et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation [J]. J Neurosurg, 2011, 114(3): 738-746.
14
Doglietto F, Belotti F, Panciani P, et al. High-definition 3-dimensional exoscope for 5-ALA glioma surgery: 3-dimensional operative video [J]. Oper Neurosurg, 2020, 18(3): E82.
15
Panciani PP, Fontanella M, Garbossa D, et al. 5-aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach [J]. Neurocirugia (Astur), 2012, 23(1): 23-28.
16
Panciani PP, Fontanella M, Schatlo B, et al. Fluorescence and image guided resection in high grade glioma [J]. Clin Neurol Neurosurg, 2012, 114(1): 37-41.
17
Wu DF, He W, Lin S, et al. Using real-time fusion imaging constructed from contrast-enhanced ultrasonography and magnetic resonance imaging for high-grade glioma in neurosurgery [J]. World Neurosurg, 2019, 125: e98-e109.
18
Van Dreden P, Elalamy I, Gerotziafas GT. The role of tissue factor in cancer-related hypercoagulability, tumor growth, angiogenesis and metastasis and future therapeutic strategies [J]. Crit Rev Oncog, 2017, 22(3-4): 219-248.
19
Ramjiawan RR, Griffifioen AW, Duda DG. Antiangiogenesis for cancer revisited: is there a role for combinations with immunotherapy? [J]. Angiogenesis, 2017, 20(2): 185-204.
20
Huang Y, Goel S, Duda DG, et al. Vascular normalization as an emerging strategy to enhance cancer immunotherapy [J]. Cancer Res, 2013, 73(10): 2943-2948.
21
Bonekamp D, Deike K, Wiestler B, et al. Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion MRI: comparison of intraindividually matched T1- and T2 (*)-based bolus techniques [J]. J Magn Reson Imaging, 2015, 42(1): 87-96.
22
Prada F, Bene MD, Fornaro R, et al. Identifification of residual tumor with intraoperative contrastenhanced ultrasound during glioblastoma resection [J]. Neurosurg Focus, 2016, 40(3): E7.
23
Artzi M, Blumenthal DT, Bokstein F, et al. Classifification of tumor area using combined DCE and DSC MRI in patients with glioblastoma [J]. J Neurooncol, 2015, 121(2): 349-357.
24
Del Bene M, Perin A, Casali C, et al. Advanced ultrasound imaging in glioma surgery: beyond gray-scale B-mode [J]. Front Oncol, 2018, 8: 576.
25
葛亚娟, 杨磊, 高军喜, 等. 术中超声造影定量分析在诊断不同级别胶质瘤瘤体及瘤周水肿的临床价值 [J]. 中国超声医学杂志, 2015, 31(3): 193-196.
26
吴意赟, 张心怡, 蔡婷, 等. 超声造影在颅内病变手术中的应用 [J]. 肿瘤影像学, 2020, 29(6): 536-540.
27
Prada F, Perin A, Martegani A, et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery [J]. Neurosurgery, 2014, 74(5): 542-552.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[12] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[13] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要