切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (12) : 1124 -1131. doi: 10.3877/cma.j.issn.1672-6448.2024.12.005

基础研究

新型微纳秒脉冲电场消融仪器的研发及动物实验研究
李琚1, 陈强2, 张洵1, 谢丽婷1, 蒋天安1,()   
  1. 1.310003 杭州,浙江大学医学院附属第一医院超声医学科
    2.310018 杭州,浙江伽奈维科技有限公司
  • 收稿日期:2024-09-23 出版日期:2024-12-01
  • 通信作者: 蒋天安
  • 基金资助:
    国家自然科学基金项目(82027803,81971623,82171937 和82202151)浙江省“尖兵”“领雁”科技计划项目(2024C03092)浙江省自然科学基金项目(Y24H180007)

Development of novel microsecond-nanosecond pulsed electric field ablation equipment and its animal experimental study

Ju Li1, Qiang Chen2, Xun Zhang1, Liting Xie1, Tian’an Jiang1,()   

  1. 1.Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
    2.hejiang CuraWay Medical Technology Co., Ltd., Hangzhou 310018, China
  • Received:2024-09-23 Published:2024-12-01
  • Corresponding author: Tian’an Jiang
引用本文:

李琚, 陈强, 张洵, 谢丽婷, 蒋天安. 新型微纳秒脉冲电场消融仪器的研发及动物实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1124-1131.

Ju Li, Qiang Chen, Xun Zhang, Liting Xie, Tian’an Jiang. Development of novel microsecond-nanosecond pulsed electric field ablation equipment and its animal experimental study[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(12): 1124-1131.

目的

探讨微纳秒脉冲电场(μs-nsPEFs)消融新技术的安全性和有效性,主要包含消融范围、肌肉收缩程度及对重要脉管结构的保护作用等。

方法

本研究利用3D 电场仿真软件建立三维模型,再进行超声引导下开腹消融手术。选用4 头雌性白猪,将白猪随机分为μs-nsPEFs 和纳秒脉冲电场(nsPEFs)两组(每组各2 头),比较两组术前仿真模拟电场分布、术中量化肌肉收缩程度、术后造影面积和组织病理学表现等,探索μs-nsPEFs 消融猪肝脏组织的安全性和有效性。计量资料组间比较采用Student’s t 检验。

结果

使用COMSOL 软件绘制的3D 仿真电场分布图显示,μs-nsPEFs的最大消融面积为(6.06±0.02)cm2;nsPEFs 的最大消融面积为(5.00±0.03)cm2P<0.01)。术后10 min 的超声造影(CEUS)结果显示,μs-nsPEFs 组消融面积为(4.70±1.62)cm2,nsPEFs 组为(4.33±1.55)cm2P>0.05)。术后第7 天超声探查μs-nsPEFs 组存在低回声区域,而nsPEFs 组未发现明显的低回声区域。术后第7 天的HE 染色切片评估提示μs-nsPEFs 消融区边界明确,面积为(0.15±0.08)cm2,而nsPEFs 组未提示消融灶。胆囊壁HE 染色切片提示μs-nsPEFs 术后第7 天消融病灶周围血流通畅,胆囊整体结构保持完整,肝肾功能指标未出现异常。

结论

新型μs-nsPEFs 技术不仅能够有效控制术中肌肉收缩和保护脉管结构,还能使肝脏消融效果持久有效,具有良好的临床应用前景。

Objective

To investigate the safety and efficacy of the new microsecond-nanosecond pulsed electric field (μs-nsPEF) ablation technology, focusing on ablation range, degree of muscle contraction,and protection of vital vascular structures.

Methods

A three-dimensional (3D) model was established using 3D electric field simulation software, followed by an ultrasound-guided open-abdomen ablation procedure.Four pigs were randomly assigned to μs-nsPEF (n=2) and nanosecond pulsed electric field (nsPEF) groups(n=2).Safety and efficacy of μs-nsPEFs in porcine liver tissue were evaluated by comparing preoperative simulated electric field distributions, intraoperative muscle contraction measurements, postoperative ablation area, and histopathological findings between the two groups.Student's t-test was used for comparisons between groups.

Results

3D electric field distribution maps created with COMSOL software showed a maximum ablation area of 6.06±0.02 cm2 for the μs-nsPEF group and 5.00±0.03 cm2 for the nsPEF group (P<0.01).Contrast-enhanced ultrasound (CEUS) imaging 10 minutes post-ablation indicated an ablation area of 4.70±1.62 cm2 for the μs-nsPEF group and 4.33±1.55 cm2 for the nsPEF group (P>0.05).Ultrasound examination on postoperative day 7 revealed a hypoechoic area in the μs-nsPEF group, whereas no such area was observed in the nsPEF group.H&E staining on postoperative day 7 showed a well-defined ablation boundary in the μs-nsPEF group with an area of 0.15±0.08 cm2, while no ablation lesion was observed in the nsPEF group.H&E staining of the gallbladder wall indicated that on postoperative day 7, blood flow around the μs-nsPEF ablation site remained unobstructed, the gallbladder structure was intact, and liver and kidney function indicators showed no abnormalities.

Conclusion

The novel μs-nsPEF technique demonstrates sustained and effective liver ablation while ensuring muscle contraction and vascular protection during surgery, indicating promising clinical applications.

图1 电场消融系统图。图a 为Curaway 集成式消融能量平台;图b 为用于消融的双针不锈钢正负电极;图c 为双针电极的针尖裸露端;图d 为超声引导下肝脏消融实物图;图e 为纳秒脉冲电场(nsPEFs)电脉冲参数示意图;图f 为微纳秒脉冲电场(μs-nsPEFs)电脉冲参数示意图
图2 3D 仿真脉冲电场分布示意图。图a 为仿真电场框架示意图;图b 为微纳秒脉冲电场(μs-nsPEFs)仿真电场场强分布示意图;图c 为纳秒脉冲电场(nsPEFs)仿真电场场强分布示意图
图3 猪肝脏消融术前及术后超声检查图像。图a ~ c 为纳秒脉冲电场(nsPEFs)术前超声引导、术后10 min 超声造影与术后第7 天超声探查图像;图d ~ f 为微纳秒脉冲电场(μs-nsPEFs)术前超声引导、术后10 min 超声造影与术后第7 天超声探查图像
图4 μs-nsPEFs 和nsPEFs 消融术后第7 天HE 染色病理图像。图a、d、g 为μs-nsPEFs 术后第7 天肝脏HE 染色图像;图b、e、h 为nsPEFs 术后第7 天肝脏HE 染色图像;图c、f、i 为μs-nsPEFs 术后第7 天胆囊壁HE 染色图像(物镜放大倍数分别为×1、×4、×20,目镜为×10;黑色虚线为消融边界) 注:μs-nsPEFs 为微纳秒脉冲电场;nsPEFs 为纳秒脉冲电场
表1 μs-nsPEFs 消融前后P01 号白猪血清电解质及肝肾生化指标分析
1
Sung H, Ferlay J, Siegel RL, et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2021, 71(3): 209-249.
2
Rumgay H, Ferlay J, de Martel C, et al.Global, regional and national burden of primary liver cancer by subtype[J].Eur J Cancer, 2022, 161:108-118.
3
Kondo Y, Shiina S, Tateishi R, et al.Intrahepatic bile duct dilatation after percutaneous radiofrequency ablation for hepatocellular carcinoma: impact on patient’s prognosis[J].Liver Int,2011, 31(2):197-205.
4
Sparchez Z, Mocan T, Radu P, et al.Prognostic factors after percutaneous radiofrequency ablation in the treatment of hepatocellular carcinoma.Impact of incomplete ablation on recurrence and overall survival rates[J].J Gastrointestin Liver Dis, 2018, 27(4): 399-407.
5
Xu M, Xie LT, Xiao YY, et al.Chinese clinical practice guidelines for ultrasound-guided irreversible electroporation of liver cancer (version 2022) [J].Hepatobiliary Pancreat Dis Int, 2022, 21(5): 462-471.
6
Geboers B, Scheffer HJ, Graybill PM,et al.High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy,gene electrotransfer, electrofusion, and electroimmunotherapy[J].Radiology, 2020, 295(2): 254-272.
7
Golberg A, Bruinsma B, Uygun B, et al. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks” [J].Sci Rep, 2015, 5:8485.
8
Rubinsky B, Onik G, Mikus P.Irreversible electroporation: a new ablation modality—clinical implications[J].Technol Cancer Res Treat,2007, 6(1): 37-48.
9
Martin RC, Schwartz E, Adams J, et al.Intra - operative anesthesia management in patients undergoing surgical irreversible electroporation of the pancreas, liver, kidney, and retroperitoneal tumors[J].Anesth Pain Med, 2015, 5(3): e22786.
10
Qasrawi R, Silve L, Burdío F, et al.Anatomically realistic simulations of liver ablation by irreversible electroporation: impact of blood vessels on ablation volumes and undertreatment[J].Technol Cancer Res Treat, 2017, 16(6): 783-792.
11
Xu M, Xu D, Dong G, et al.The safety and efficacy of nanosecond pulsed electric field in patients with hepatocellular carcinoma: a prospective phase 1 clinical study protocol[J].Front Oncol, 2022, 12:869316.
12
Wang Y, Ma R, Huang Z, et al.Investigation of lethal thresholds of nanosecond pulsed electric field in rabbit VX2 hepatic tumors through finite element analysis and verification with a single-needle bipolar electrode: A prospective strategy employing three-dimensional comparisons[J].Comput Biol Med, 2024, 168: 107824.
13
Pethig R.Dielectric properties of body tissues[J].Clin Phys Physiol Meas, 1987, 8(Suppl A): 5-12.
14
Piliopoulos S, Reppas L, Filippiadis D, et al.Irreversible electroporation for the management of pancreatic cancer: Current data and future directions[J].World J Gastroenterol, 2023, 29(2): 223-231.
15
Zeng J, Liu G, Li ZH, et al.The safety and efficacy of irreversible electroporation for large hepatocellular carcinoma[J].Technol Cancer Res Treat, 2017, 16(1): 120-124.
16
Qian J, Liu J, Hong L, et al.Upregulation of PDGF mediates robust liver regeneration after nanosecond pulsed electric field ablation by promoting the HGF/c-Met pathway[J].Biomed Res Int, 2020, 2020:3635787.
17
Qian J, Chen T, Wu Q, et al.Blocking exposed PD-L1 elicited by nanosecond pulsed electric field reverses dysfunction of CD8+ T cells in liver cancer.Cancer Lett[J].2020, 495: 1-11.
18
Golberg A, Bruinsma BG, Uygun BE, et al.Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks”[J].Sci Rep, 2015, 5: 8485.
19
Distelmaier M, Barabasch A, Heil P, et al.Midterm safety and efficacy of irreversible electroporation of malignant liver tumors located close to major portal or hepatic veins[J].Radiology, 2017, 285(3): 1023-1031.
20
Arena CB, Sano MB, Rossmeisl JH Jr, et al.High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction[J].Biomed Eng Online, 2011, 10: 102.
21
董守龙, 姚陈果, 储贻道, 等.不可逆电穿孔对兔组织阻抗的影响[J].高电压技术, 2015, 41(4): 1402-1408.
22
Dunki-Jacobs EM, Philips P, Martin RC 2nd.Evaluation of thermal injury to liver, pancreas and kidney during irreversible electroporation in an in vivo experimental model[J].Br J Surg, 2014, 101(9): 1113-1121.
23
Rogers WR, Merritt JH, Comeaux JA, et al.Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond[J].IEEE Trans Plasma Science, 2004, 32(4): 1587-1599.
24
Long G, Shires PK, Plescia D, et al.Targeted tissue ablation with nanosecond pulses[J].IEEE Trans Biomed Eng, 2011, 58(8).
25
Sugimoto K, Abe M, Yoshimasu Y, et al.Irreversible electroporation of hepatocellular carcinoma: the role of ultrasonography[J].Ultrasonography, 2020, 39(3): 229-237.
26
Kim KH, An JS, Park YJ, et al.Tissue ablation using irreversible electrolytic electroporation with reduced voltage[J].Electronics, 2023,12(13): 2916.
[1] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[2] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[3] 曹琨芃, 王昕玥, 吴柳希, 邓红艳, 李璐, 徐超丽, 叶新华. 淋巴瘤患者超声引导下颈内静脉置管术后静脉血栓形成的危险因素评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 310-318.
[4] 诸佳玮, 陈强, 王辉阳, 蒋天安. 双极射频活检针在肝粗针活检止血的研发与初步应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 69-74.
[5] 李盼, 韦登飞, 乔克坤, 李熊刚. 超声引导下骶管阻滞与髂腹股沟及髂腹下神经阻滞用于小儿腹腔镜疝囊高位结扎术的比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 326-330.
[6] 杨晓宇, 王佳, 张维峰, 陈雨辰. 两种腹横肌平面阻滞方法在老年择期腹股沟疝修补术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 320-325.
[7] 张红军, 顾兴, 赵延军, 柴雅琴, 李文洁, 师佩, 张海涛. 超声引导下胸膜活检与内科胸腔镜活检诊断一致性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 185-188.
[8] 张挽乾, 潘佰猛, 张秋雨, 曹芮, 张灵强. 不同引流方法在急性胆囊炎患者中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 135-139.
[9] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[10] 陈雷, 李丹丹. 超声引导下A型肉毒毒素注射治疗腰背肌筋膜疼痛综合征的疗效观察[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 117-122.
[11] 莫鹏, 郭杏春, 梁秀娟, 王耀明. 超声引导与CT引导射频消融治疗肝细胞癌患者疗效及预后比较[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 151-154.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 陈立如, 李志刚, 李春光. 一个标准的动物肺叶切除模型——猪肺的基本解剖[J/OL]. 中华胸部外科电子杂志, 2024, 11(01): 16-22.
[14] 周云, 韩丽, 赵月, 袁晨, 杨昌建, 杨芬, 谢阳. 超声引导下星状神经节阻滞对老年单肺通气患者肺内分流及脑氧代谢的影响[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 20-25.
[15] 刘桂林, 王雪飞, 姬旭, 陈鹏, 王少松. 超声引导下手法压迫联合小剂量凝血酶注射治疗医源性股动脉假性动脉瘤[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 571-575.
阅读次数
全文


摘要