切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (07) : 682 -687. doi: 10.3877/cma.j.issn.1672-6448.2022.07.016

浅表器官超声影像学

S-detect技术辅助住院医师诊断甲状腺影像报告和数据系统4类≤1 cm甲状腺结节的应用价值
李盈盈1, 李欣洋1, 阎琳1, 肖静1, 张明博1, 罗渝昆1,()   
  1. 1. 100853 北京,解放军总医院第一医学中心超声诊断科
  • 收稿日期:2021-12-07 出版日期:2022-07-01
  • 通信作者: 罗渝昆
  • 基金资助:
    军队医药卫生成果扩试(21WKS09); 北京市科技计划(Z221100003522001)

Auxiliary diagnostic value of S-detect technique in differential diagnosis of TI-RADS 4 subcentimeter thyroid nodules by ultrasound residents

Yingying Li1, Xinyang Li1, Lin Yan1, Jing Xiao1, Mingbo Zhang1, Yukun Luo1,()   

  1. 1. Ultrasonic Department of First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • Received:2021-12-07 Published:2022-07-01
  • Corresponding author: Yukun Luo
引用本文:

李盈盈, 李欣洋, 阎琳, 肖静, 张明博, 罗渝昆. S-detect技术辅助住院医师诊断甲状腺影像报告和数据系统4类≤1 cm甲状腺结节的应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(07): 682-687.

Yingying Li, Xinyang Li, Lin Yan, Jing Xiao, Mingbo Zhang, Yukun Luo. Auxiliary diagnostic value of S-detect technique in differential diagnosis of TI-RADS 4 subcentimeter thyroid nodules by ultrasound residents[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(07): 682-687.

目的

探讨S-detect人工智能技术在辅助住院医师诊断≤1 cm的甲状腺影像报告和数据系统(TI-RADS)4类甲状腺结节良恶性中的临床应用价值。

方法

2021年3~4月前瞻性连续纳入在解放军总医院第一医学中心行甲状腺超声检查和甲状腺超声引导下穿刺活检及外科手术切除的133例患者,共133个最大径≤1 cm的TI-RADS 4类甲状腺结节,其中良性结节21个,恶性结节112个。采集上述甲状腺结节的超声图像、S-detect诊断模式图像。以手术病理为金标准,绘制常规超声、S-deteet技术及两者联合诊断甲状腺结节良恶性的受试者操作特征(ROC)曲线,采用McNemar检验对比分析住院医师应用常规超声、S-detect技术及两者联合诊断甲状腺结节良恶性的敏感度、特异度及准确性的差异,采用DeLong检验比较ROC曲线下面积的差异。

结果

住院医师应用常规超声诊断甲状腺结节良恶性的敏感度为95.5%(107/112)、特异度为42.9%(9/21)、准确性为88.0%(116/133);S-detect技术诊断的敏感度为93.8%(105/112)、特异度为52.4%(11/21)、准确性为87.2%(116/133);S-detect技术与常规超声联合诊断的敏感度为92.0%(105/112)、特异度为76.2%(11/21)、准确性为89.5%(116/133)。常规超声、S-detect技术及两者联合鉴别诊断≤1 cm甲状腺结节良恶性的ROC曲线下面积分别为0.692、0.731和0.841。两者联合诊断的准确性、特异度和ROC曲线下面积均高于单独应用常规超声和S-detect技术,其中ROC曲线下面积比较差异具有统计学意义(P=0.007,P=0.028)。

结论

S-detect人工智能技术辅助住院医师可提高对≤1 cm TI-RADS 4类甲状腺结节良恶性的诊断效能。

Objective

To evaluate the auxiliary diagnostic value of S-detect artificial intelligence system in the differential diagnosis of thyroid imaging reporting and data system (TI-RADS) 4 subcentimeter thyroid nodules by ultrasound residents.

Methods

From March 2021 to April 2021, 133 patients with 133 TI-RADS 4 thyroid nodules (maximum diameter ≤1 cm, including 112 malignant nodules and 21 benign nodules) undergoing thyroid ultrasound examination and ultrasound guided biopsy/thyroid surgery at the First Center of Chinese PLA General Hospital were consecutively enrolled. Ultrasound images and S-detect mode images were acquired by ultrasound residents. Taking pathological results as the golden standard, the receiver operating characteristic (ROC) curve was drawn and the diagnostic performance of residents using ultrasound, S-detect technique, and the combination of these two methods was analyzed. The sensitivity, specificity, and accuracy were compared using McNemar's test and the area under the curve (AUC) was compared using DeLong test.

Results

The sensitivity, specificity, and accuracy of ultrasound in differential diagnosis of thyroid nodules ≤1 cm were 95.5% (107/112), 42.9% (9/21), and 88.0% (116/133), of S-detect were 93.8% (105/112), 52.4% (11/21), and 87.2% (116/133), and of the residents aided with S-detect were 92.0% (105/112), 76.2% (11/21), and 89.5% (116/133), respectively. The AUC values of ultrasound, S-detect, and the combination of the two methods were 0.692, 0.731, and 0.841, respectively. The accuracy, specificity, and AUC of the combined method were higher than those of ultrasound and S-detect alone; the AUC was statistically different (P=0.007 and P=0.028, respectively).

Conclusion

S-detect technique may be a complementary tool in imaging diagnosis, which contributes to the augment of diagnostic performance of ultrasound residents in differentially diagnosing TI-RADS 4 thyroid nodules ≤1 cm.

表1 133例甲状腺结节患者一般临床资料
图1 S-detect技术鉴别最大径≤1 cm甲状腺结节良恶性的漏诊病例。甲状腺左叶下等/稍低回声实性结节,边界模糊,形态欠规则,内可见多发点状强回声,S-detect技术诊断为良性可能,病理结果为甲状腺乳头状癌
图2 S-detect技术与常规超声联合诊断最大径≤1 cm甲状腺结节良恶性的正确病例。图a示甲状腺右叶下低回声实性结节,边界模糊,形态欠规则,常规超声诊断为良性可能,S-detect技术诊断为恶性可能,病理结果为甲状腺乳头状癌;图b示甲状腺右叶中部稍低回声结节,边界不清,形态尚规则,常规超声诊断为良性可能,S-detect技术诊断为恶性可能,病理结果为甲状腺乳头状癌
表2 常规超声、S-detect技术及两者联合诊断结果
表3 常规超声、S-detect技术及两者联合诊断TI-RADS 4类最大径≤1 cm甲状腺结节良恶性的诊断效能
图3 常规超声、S-detect技术及两者联合诊断TI-RADS 4类≤1 cm甲状腺结节良恶性的受试者操作特征曲线图
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
Chmielik E, Rusinek D, Oczko-Wojciechowska M, et al. Heterogeneity of thyroid cancer [J]. Pathobiology, 2018, 85(1-2): 117-129.
3
Leenhardt L, Grosclaude P, Chérié-Challine L. Increased incidence of thyroid carcinoma in france: a true epidemic or thyroid nodule management effects? Report from the french thyroid cancer committee [J]. Thyroid, 2004, 14(12): 1056-1060.
4
Davies L, Welch H. Increasing incidence of thyroid cancer in the united states, 1973-2002 [J]. JAMA, 2006, 295(18): 2164-2167.
5
Rego-Iraeta A, Pérez-Méndez L, Mantinan B, et al. Time trends for thyroid cancer in northwestern spain: true rise in the incidence of micro and larger forms of papillary thyroid carcinoma [J]. Thyroid, 2009, 19(4): 333-340.
6
Chen W, Zheng R, Baade P, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
7
Haugen B, Alexander E, Bible K, et al. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer [J]. Thyroid, 2016, 26(1): 1-133.
8
Shin J, Baek J, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised korean society of thyroid radiology consensus statement and recommendations [J]. Korean J Radiol, 2016, 17(3): 370-395.
9
Gharib H, Papini E, Garber J, et al. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules--2016 update [J]. Endocr Pract, 2016, 22(5): 622-639.
10
Tessler F, Middleton W, Grant E, et al. ACR thyroid imaging, reporting and data system (ti-rads): white paper of the ACR TI-RADS committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
11
Park C, Kim S, Jung S, et al. Observer variability in the sonographic evaluation of thyroid nodules [J]. J Clin Ultrasound, 2010, 38(6): 287-293.
12
Choi S, Kim E, Kwak J, et al. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules [J]. Thyroid, 2010, 20(2): 167-172.
13
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey [J]. Biomed Res Int, 2018, 2018: 5137904.
14
Yaqub M, Kelly B, Papageorghiou A, et al. A deep learning solution for automatic fetal neurosonographic diagnostic plane verification using clinical standard constraints [J]. Ultrasound Med Biol, 2017, 43(12): 2925-2933.
15
Kim K, Song M, Kim E, et al. Clinical application of s-detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
16
Cibas ES, Ali SZ. The 2017 bethesda system for reporting thyroid cytopathology [J]. Thyroid, 2017, 27(11): 1341-1346.
17
Štepán-Buksakowska I, Accurso J, Diehn F, et al. Computer-aided diagnosis improves detection of small intracranial aneurysms on mra in a clinical setting [J]. AJNR Am J Neuroradiol, 2014, 35(10): 1897-1902.
18
Moga TV, Popescu A, Sporea I, et al. Is contrast enhanced ultrasonography a useful tool in a beginner's hand? How much can a computer assisted diagnosis prototype help in characterizing the malignancy of focal liver lesions? [J]. Med Ultrason, 2017, 19(3): 252-258.
19
Choi Y, Baek J, Park H, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: Initial clinical assessment [J]. Thyroid, 2017, 27(4): 546-552.
20
Yoo Y, Ha E, Cho Y, et al. Computer-aided diagnosis of thyroid nodules via ultrasonography: initial clinical experience [J]. Korean J Radiol, 2018, 19(4): 665-672.
21
Wei Q, Zeng S, Wang L, et al. The value of S-Detect in improving the diagnostic performance of radiologists for the differential diagnosis of thyroid nodules [J]. Med Ultrason, 2020, 22(4): 415-423.
22
陈晨, 孙鹏飞, 郭君, 等. 人工智能在甲状腺结节良恶性中的诊断价值 [J]. 中国超声医学杂志, 2020, 36(7): 585-588.
23
陈璟泰, 侯令密, 唐云辉, 等. S-Detect对甲状腺结节良恶性鉴别诊断价值的Meta分析 [J]. 中国全科医学, 2021, 24(30): 3814-3820.
24
Chung SR, Baek JH, Lee MK, et al. Computer-aided diagnosis system for the evaluation of thyroid nodules on ultrasonography: prospective non-inferiority study according to the experience level of radiologists [J]. Korean J Radiol, 2020, 21(3): 369-376.
25
Sugitani I, Ito Y, Takeuchi D, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the japan association of endocrine surgery task force on management for papillary thyroid microcarcinoma [J]. Thyroid, 2021, 31(2): 183-192.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[12] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[13] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要