1 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
Chmielik E, Rusinek D, Oczko-Wojciechowska M, et al. Heterogeneity of thyroid cancer [J]. Pathobiology, 2018, 85(1-2): 117-129.
|
3 |
Leenhardt L, Grosclaude P, Chérié-Challine L. Increased incidence of thyroid carcinoma in france: a true epidemic or thyroid nodule management effects? Report from the french thyroid cancer committee [J]. Thyroid, 2004, 14(12): 1056-1060.
|
4 |
Davies L, Welch H. Increasing incidence of thyroid cancer in the united states, 1973-2002 [J]. JAMA, 2006, 295(18): 2164-2167.
|
5 |
Rego-Iraeta A, Pérez-Méndez L, Mantinan B, et al. Time trends for thyroid cancer in northwestern spain: true rise in the incidence of micro and larger forms of papillary thyroid carcinoma [J]. Thyroid, 2009, 19(4): 333-340.
|
6 |
Chen W, Zheng R, Baade P, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
|
7 |
Haugen B, Alexander E, Bible K, et al. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer [J]. Thyroid, 2016, 26(1): 1-133.
|
8 |
Shin J, Baek J, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised korean society of thyroid radiology consensus statement and recommendations [J]. Korean J Radiol, 2016, 17(3): 370-395.
|
9 |
Gharib H, Papini E, Garber J, et al. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules--2016 update [J]. Endocr Pract, 2016, 22(5): 622-639.
|
10 |
Tessler F, Middleton W, Grant E, et al. ACR thyroid imaging, reporting and data system (ti-rads): white paper of the ACR TI-RADS committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
|
11 |
Park C, Kim S, Jung S, et al. Observer variability in the sonographic evaluation of thyroid nodules [J]. J Clin Ultrasound, 2010, 38(6): 287-293.
|
12 |
Choi S, Kim E, Kwak J, et al. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules [J]. Thyroid, 2010, 20(2): 167-172.
|
13 |
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey [J]. Biomed Res Int, 2018, 2018: 5137904.
|
14 |
Yaqub M, Kelly B, Papageorghiou A, et al. A deep learning solution for automatic fetal neurosonographic diagnostic plane verification using clinical standard constraints [J]. Ultrasound Med Biol, 2017, 43(12): 2925-2933.
|
15 |
Kim K, Song M, Kim E, et al. Clinical application of s-detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
|
16 |
Cibas ES, Ali SZ. The 2017 bethesda system for reporting thyroid cytopathology [J]. Thyroid, 2017, 27(11): 1341-1346.
|
17 |
Štepán-Buksakowska I, Accurso J, Diehn F, et al. Computer-aided diagnosis improves detection of small intracranial aneurysms on mra in a clinical setting [J]. AJNR Am J Neuroradiol, 2014, 35(10): 1897-1902.
|
18 |
Moga TV, Popescu A, Sporea I, et al. Is contrast enhanced ultrasonography a useful tool in a beginner's hand? How much can a computer assisted diagnosis prototype help in characterizing the malignancy of focal liver lesions? [J]. Med Ultrason, 2017, 19(3): 252-258.
|
19 |
Choi Y, Baek J, Park H, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: Initial clinical assessment [J]. Thyroid, 2017, 27(4): 546-552.
|
20 |
Yoo Y, Ha E, Cho Y, et al. Computer-aided diagnosis of thyroid nodules via ultrasonography: initial clinical experience [J]. Korean J Radiol, 2018, 19(4): 665-672.
|
21 |
Wei Q, Zeng S, Wang L, et al. The value of S-Detect in improving the diagnostic performance of radiologists for the differential diagnosis of thyroid nodules [J]. Med Ultrason, 2020, 22(4): 415-423.
|
22 |
陈晨, 孙鹏飞, 郭君, 等. 人工智能在甲状腺结节良恶性中的诊断价值 [J]. 中国超声医学杂志, 2020, 36(7): 585-588.
|
23 |
陈璟泰, 侯令密, 唐云辉, 等. S-Detect对甲状腺结节良恶性鉴别诊断价值的Meta分析 [J]. 中国全科医学, 2021, 24(30): 3814-3820.
|
24 |
Chung SR, Baek JH, Lee MK, et al. Computer-aided diagnosis system for the evaluation of thyroid nodules on ultrasonography: prospective non-inferiority study according to the experience level of radiologists [J]. Korean J Radiol, 2020, 21(3): 369-376.
|
25 |
Sugitani I, Ito Y, Takeuchi D, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the japan association of endocrine surgery task force on management for papillary thyroid microcarcinoma [J]. Thyroid, 2021, 31(2): 183-192.
|