切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (08) : 575 -580. doi: 10.3877/cma.j.issn.1672-6448.2019.08.005

所属专题: 乳腺超声 文献

浅表器官超声影像学

在体乳腺组织非线性变形特征及其在静态超声弹性成像中的影响
梁思1, 胡向东1, 刘冬1, 钱林学1,()   
  1. 1. 100050 首都医科大学附属北京友谊医院超声科
  • 收稿日期:2019-07-01 出版日期:2019-08-01
  • 通信作者: 钱林学
  • 基金资助:
    首都医科大学科研培育基金(pyz2018135)

Effects of nonlinear elasticity on ultrasound elastography of normal breast tissues

Si Liang1, Xiangdong Hu1, Dong Liu1, Linxue Qian1,()   

  1. 1. Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
  • Received:2019-07-01 Published:2019-08-01
  • Corresponding author: Linxue Qian
  • About author:
    Corresponding author: Qian Linxue, Email:
引用本文:

梁思, 胡向东, 刘冬, 钱林学. 在体乳腺组织非线性变形特征及其在静态超声弹性成像中的影响[J]. 中华医学超声杂志(电子版), 2019, 16(08): 575-580.

Si Liang, Xiangdong Hu, Dong Liu, Linxue Qian. Effects of nonlinear elasticity on ultrasound elastography of normal breast tissues[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(08): 575-580.

目的

通过剪切波弹性成像定量研究在体乳腺组织非线性变形特征,评价非线性变形特征对乳腺组织静态超声弹性成像测量的影响,以指导和规范乳腺超声弹性成像操作方法。

方法

前瞻性选取自2014年1月至2014年5月于北京友谊医院超声科进行体检的女性26例。其中14例女性(8例双侧乳腺,6例单侧乳腺)纳入乳腺组织非线性变形特征的研究,12例女性(8例双侧乳腺,4例单侧乳腺)纳入乳腺组织非线性变形特征在静态超声弹性成像中的影响相关研究。采用超声剪切波弹性成像功能对乳腺组织非线性变形特征进行研究,采用超声静态弹性成像功能对乳腺组织非线性变形特征在静态超声弹性成像中的影响进行研究。计算乳腺组织的非线性参数硬化系数(b)、初始未受压状态下的剪切模量(μ0)及伸长比(λ),并绘制乳腺非线性变形特征曲线。在体乳腺组织非线性变形特征研究中,将8例受试者双侧乳腺的bμ0按照左右两侧分组,并进行比较;将14例受试者所有乳腺的bμ0按照相对位置不同分为乳头上方组、乳头内侧组、乳头下方组、乳头外侧组、外上象限组,并进行比较。

结果

14例受试者的乳腺非线性参数b=6.36±1.74,μ0=(3.01±0.47)kPa,据此绘制出反映乳腺非线性特征的曲线图,其反映乳腺组织形变与剪切模量的关系为伸长比λ值越小(乳腺的形变越大),剪切模量μ值变化越显著。8例受试者左右两侧乳腺的非线性参数bμ0比较,差异均无统计学意义(t=0.520、0.437,P均>0.05)。14例受试者乳腺不同相对位置的非线性参数bμ0比较,差异均无统计学意义(F=1.339、1.916,P均>0.05)。静态超声弹性成像中12例受试者,计算得出乳腺组织的最小伸长比λ=0.75±0.05,绘制反映乳腺组织形变和弹性模量增加倍数之间关系的曲线图,其反映在乳腺非线性变形达到25%时,剪切模量达到初始剪切模量的5.72倍,在变形程度达到5%时,剪切模量为未受压状态的1.10倍。

结论

乳腺组织的弹性模量随变形程度的增大而呈非线性增加。乳腺两侧及不同相对位置非线性弹性性质无明显差异。应用乳腺静态超声弹性成像时,需将超声探头加压导致的压缩变形控制在5%以内。

Objective

To quantify the nonlinear elasticity of breast tissue to guide the manipulating mode of ultrasound elastography.

Methods

In this prospective study, 26 women who underwent physical examination at the Department of Ultrasound of Beijing Friendship Hospital from January 2014 to May 2014 were included. Among them, 14 women (8 cases of bilateral breasts and 6 cases of unilateral breast) participated in the study of non-linear breast deformation. Twelve women (8 cases of bilateral breasts and 4 cases of unilateral breast) participated in the study of non-linear deformation of breast tissue in static ultrasound elastography. We used ultrasound shear wave elastography to study the nonlinear elasticity of breast tissues in vivo (group A), and static ultrasound elastography to study effects of nonlinear elasticity on static ultrasound elastography (group B). The non-linear parameters [coefficient of hardening (b), initial shear modulus (μ0), and stretch ratio (λ)] of the breast were calculated and the non-linear deformation characteristic curve of the breast was drawn. In group A, b and μ0 of 8 subjects (bilateral breasts) were grouped according to the side of the breast and compared, while b and μ0 of 14 subjects were divided into five groups according to their positions, which were upper (relative to the nipple), medial, lower, lateral, and upper lateral quadrant groups, and compared.

Results

The equations for b and μ0 were: b=6.36±1.74 and μ0=(3.01±0.47) kPa. No significant difference was found in the nonlinearity of bilateral breast (bleft=6.12±1.56, bright=6.53±2.21, P=0.428). Also, F was 1.339 and 1.916 and P was 0.260 and 0.113, respectively, there was no significant difference among different relative locations (F=1.339 and 1.916, P=0.260 and 0.113, respectively). The minimum λ of the breast in static ultrasound elastography was 0.75±0.05, and the shear modulus was 5.72 times the initial value.

Conclusion

The elastic modulus of the breast increases nonlinearly with the decrease in the stretch ratio, implying that deformation should be controlled while applying static ultrasound elastography.

图1 剪切波弹性成像测量乳腺厚度及弹性模量。图中蓝色方框为弹性测量区域,标记为"+"的圆形区域为弹性感兴趣区,图中Q-Box的读数包括平均值(Mean)、最小值(Min)、最大值(Max)和标准差(SD),取平均值(Mean)作为弹性模量取值。标记为"×"的线段长度为乳腺厚度,从皮下测量至乳腺后界
图2 静态超声弹性成像测量乳腺厚度。图a、b为未加压状态下静态超声弹性成像及对应的灰阶超声图像,可以看到皮肤与探头之间的耦合剂无回声区,未加压状态下乳腺的厚度为2.16 cm;图c、d为最大压缩深度状态下静态超声弹性成像及对应的灰阶超声图像,最大压缩深度时乳腺的厚度为1.47 cm
图3 乳腺组织形变(伸长比)与剪切模量的变化关系曲线图
表1 8例受试者左右两侧乳腺的非线性参数比较(±s
表2 14例受试者乳腺不同相对位置的非线性参数比较(±s
图4 静态弹性成像操作中乳腺组织形变(伸长比)与剪切模量变化倍数的关系曲线图
1
Ricci P, Maggini E, Mancuso E, et al. Clinical application of breast elastography: State of the art [J]. Eur JRadiol, 2014, 83(3): 429-437.
2
Balleyguier C, Canale S, Ben Hassen W, et al. Breast elasticity: Principles, technique, results: An update and overview of commercially available software [J]. Eur J Radiol, 2013, 82(3): 427-434.
3
Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications [J]. Ultraschall Med, 2013, 34(3): 238-253.
4
Barr RG, Nakashima K, Amy D, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast [J]. Ultrasound Med Biol, 2015, 41(5): 1148-1160.
5
Chang JM, Park IA, Lee SH, et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer [J]. Eur Radiol, 2013, 23(9): 2450-2458.
6
Wang ZL, Li JL, Li M, et al. Study of quantitative elastography with supersonic shear imagingin the diagnosis of breast tumours [J]. Radiol Med, 2013, 118(4): 583-590.
7
Cosgrove DO, Berg WA, Doré CJ, et al. Shear wave elastography for breast massesis highly reproducible [J]. Eur Radiol, 2012, 22(5): 1023-1032.
8
Bullier B, MacGrogan G, Bonnefoi H, et al. Imaging features of sporadic breast cancer in womenunder 40 years old: 97 cases [J]. Eur Radiol, 2013, 23(12): 3237-3245.
9
Di Segni M, de Soccio V, Cantisani V, et al. Automated classification of focal breast lesions according to S-detect validation and role as a clinical and teaching tool [J]. J Ultrasound, 2018, 21(2): 105-118.
10
Ophir J, Alam SK, Garra BS, et al. Elastography: Imaging the elastic properties of soft tissues with ultrasound [J]. J Med Ultrason(2001), 2002, 29(4): 155-171.
11
Basafa E, Farahmand F. Real-time simulation of the nonlinear visco-elastic deformations of soft tissues [J]. Int J Comput Assist Radiol Surg, 2011, 6(3): 297-307.
12
Jiang Y, Li GY, Qian LX, et al. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: Inverse method, ex vivo and in vivo experiments [J]. Med Image Anal, 2015, 20 (1): 97-111.
13
Goddi A, Bonardi M, Alessi S. Breast elastography: A literature review [J]. J Ultrasound, 2012, 15(3): 192-198.
14
Hiltawsky KM, Krüger M, Starke C, et al. Freehand ultrasound elastography of breast lesions: clinical results [J]. Ultrasound Med Biol, 2001, 27(11): 1461-1469.
15
Itoh A, Ueno E, Tohno E, et al. Breast disease: Clinical application of US elastography for diagnosis [J]. Radiology, 2006, 239 (2): 341-350.
16
张真真, 聂云雷. 超声弹性成像评分法对乳腺实性肿块良恶性诊断价值研究 [J]. 影像研究与医学应用, 2019, 3 (6): 82-83.
17
宋宇, 张宇虹, 曲晓霞. 超声弹性成像评分法和比值法在乳腺非肿块型病变鉴别诊断中的价值 [J]. 中国超声医学杂志, 2016, 32(3): 199-201.
18
Scaperrotta G, Ferranti C, Costa C, et al. Role of sonoelastography in non-palpable breast lesions [J]. Eur Radiol, 2008, 18(11): 2381-2389.
19
Farrokh A, Wojcinski S, Degenhardt F. Diagnostic Value of Strain Ratio Measurement in the Differentiation of Malignant and Benign Breast Lesions [J]. Ultraschall Med, 2011, 32(4): 400-405.
20
Landoni V, Francione V, Marzi S, et al. Quantitative analysis of elastography images in the detection of breast cancer [J]. Eur J Radiol, 2012, 81(7): 1527-1531.
21
Sadigh G, Carlos RC, Neal CH, et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis [J]. Breast Cancer Res Treat, 2012, 134(3): 923-931.
22
Kumm TR, Szabunio MM. Elastography for the Characterization of Breast Lesions: Initial Clinical Experience [J]. Cancer Control, 2010, 17(3): 156-161.
23
Nakashima K, Mizutou A, Sakurai S. Auto strain ratio system for the quality control of breast strain elastography [J]. J Med Ultrason(2001), 2018, 45(2): 261-268.
24
Arslan S, Uslu N, Ozturk FU, et al. Can strain elastography combined with ultrasound breast imaging reporting and data system be a more effective method in the differentiation of benign and malignant breast lesions? [J]. J Med Ultrason(2001), 2017, 44(4): 289-296.
25
Umemoto T, Ueno E, Matsumura T, et al. Ex vivo and in vivo assessment of the non-linearity of elasticity properties of breast tissues for quantitative strain elastography [J]. Ultrasound Med Biol, 2014, 40(8): 1755-1768.
[1] 张盼盼, 张青陵, 侯银, 张良西, 沈忠兵, 鲁柯兵, 杭哲, 朱向明. 基于超声影像组学的乳腺癌预测模型的诊断性能研究[J]. 中华医学超声杂志(电子版), 2022, 19(06): 554-560.
[2] 江宇轩, 刘文丽, 武会娟, 方晨, 钱嘉林. 神经动态超声弹性成像的三维有限元分析[J]. 中华医学超声杂志(电子版), 2021, 18(06): 583-589.
[3] 张君, 沈素红, 刘春龙, 张志杰. 剪切波弹性成像技术量化评估健康人斜方肌弹性模量的应用[J]. 中华医学超声杂志(电子版), 2021, 18(03): 307-312.
[4] 任玲, 罗渝昆, 宋青, 费翔, 田晓琦, 焦子育. 超声造影及弹性成像技术对超声造影无增强甲状腺结节良恶性的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(06): 552-557.
[5] 胡紫玥, 卢漫, 王璐, 魏婷, 巫明钢, 范玉亭, 杨薇. 三维剪切波弹性成像诊断甲状腺结节良恶性的初步应用[J]. 中华医学超声杂志(电子版), 2020, 17(01): 11-16.
[6] 李硕, 郭瑞君. 实时剪切波弹性成像技术评估踝关节外侧副韧带急性闭合型损伤的临床应用[J]. 中华医学超声杂志(电子版), 2019, 16(11): 815-820.
[7] 张会萍, 周毓青. 乳腺癌超声弹性诊断新进展[J]. 中华乳腺病杂志(电子版), 2021, 15(01): 1-3.
[8] 强坤坤, 罗红. 杜氏肌营养不良症患儿的高频超声与剪切波弹性成像诊断研究现状及前景[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 162-167.
[9] 谢川博, 满琴, 罗红. 人工智能乳腺超声对乳腺癌的诊断及预后预测价值[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(03): 368-372.
[10] 吴金柱, 蔡卫华, 徐磊, 陈琳, 肖锋, 许甜, 王建新, 朱任飞, 季汉珍, 张鹏. 标准残肝体积联合瞬时弹性成像技术预测半肝切除的安全性研究[J]. 中华普外科手术学杂志(电子版), 2020, 14(06): 585-589.
[11] 崔宁宜, 王勇, 唐源, 张蕊, 刘孟嘉. 直肠腔内剪切波弹性成像对局部进展期直肠癌新辅助放化疗后T分期的价值[J]. 中华结直肠疾病电子杂志, 2020, 09(06): 586-591.
[12] 唐辉, 陈勇, 邵川, 罗孝全, 王潇娅, 邹成功, 文国虹, 何家全. 南充市自发性脑出血发病与气温的相关性及滞后效应[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 202-207.
[13] 马宁, 刘雨丰, 陈明学, 王月香, 万一群, 刘舒云, 眭翔, 郭全义. 仿生组织工程软骨修复关节软骨损伤的效果及应用超声弹性成像方法检测价值分析[J]. 中华老年骨科与康复电子杂志, 2020, 06(02): 62-67.
[14] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[15] 杨斌, 侯曼曼, 王少春. 高频超声及弹性成像技术对周围神经病变诊断价值的研究进展[J]. 中华诊断学电子杂志, 2020, 08(02): 141-144.
阅读次数
全文


摘要