1 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
|
2 |
Torre LA, Bray F, SIiegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.
|
3 |
Lee CH. Screening mammography: proven benefit, continued controversy [J]. Radiol Clin N Am, 2002, 40(3): 395-407.
|
4 |
Yoshida H, Casalino DD, Keserci B, et al. Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images [J]. Phys Med Biol, 2003, 48(22): 3735-3753.
|
5 |
Gómez-Flores W, Ruiz-Ortega BA. New Fully Automated Method for Segmentation of Breast Lesions on Ultrasound Based on Texture Analysis [J]. Ultrasound Med Biol, 2016, 42(7): 1637-1650.
|
6 |
D′Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, breast imaging reporing and data system [M]. Reston, Va: American College of Radiology, 2013.
|
7 |
Haralick RM, Shanmuga K, Dinstein I. Textural features for image classification [J]. IEEE Trans Syst Man Cybern, 1973, 3(6): 610-621.
|
8 |
Valckx FM, Thijssen JM. Characterization of echographic image texture by cooccurrence matrix parame- ters [J]. Ultrasound Med Biol, 1997; 23(4): 559-571.
|
9 |
Friedman JH. Greedy function approximation: A gradient boosting machine [J]. Ann Stat, 2000, 29(5): 1189-1232.
|
10 |
Bhatia KS, Lee YY, Yuen EH, et al. Ultrasound elastography in the head and neck. Part II. Accuracy for malignancy [J]. Cancer Imaging, 2013, 13(2): 260-276.
|
11 |
Evans A, Whelehan P, Thomson K, et al. Quantitative shear wave ultrasound elastography: Initial experience in solid breast masses [J]. Breast Cancer Res, 2010, 12(6): R104.
|
12 |
Tomita F, Tsuji S. Computer Analysis of Visual Textures [M]. Boston: Springer, 1990: 13-36.
|
13 |
Huang C, He Q, Huang M, et al. Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An In Vivo Feasibility Study Validated by Magnetic Resonance Imaging [J]. Ultrasound Med Biol, 2017, 43(4): 817-830.
|
14 |
Tan M, Mariapun S, Yip CH, et al. A novel method of determining breast cancer risk using parenchymal textural analysis of mammography images on an Asian cohort [J]. Phys Med Biol, 2019, 64(3): 035016.
|
15 |
Bhatia KS, Lam AC, Pang SW, et al. Feasibility Study of Texture Analysis Using Ultrasound Shear Wave Elastography to Predict Malignancy in Thyroid Nodules [J]. Ultrasound Med Biol, 2016, 42(7): 1671-1680.
|
16 |
Soltaninejad M, Yang G, Lambrou T, et al. Supervised Learning based Multimodal MRI Brain Tumour Segmentation using Texture Features from Supervoxels [J]. Comput Meth Prog Bio, 2018, 157(4): 69-84.
|