切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (08) : 581 -585. doi: 10.3877/cma.j.issn.1672-6448.2019.08.006

所属专题: 乳腺超声 文献

浅表器官超声影像学

超声联合纹理分析对乳腺结节良恶性的诊断价值
种美玲1, 时白雪1, 张禧2, 钱林学1, 胡向东1,()   
  1. 1. 100050 首都医科大学附属北京友谊医院超声科
    2. 100084 北京,清华大学生物医学工程系
  • 收稿日期:2019-07-01 出版日期:2019-08-01
  • 通信作者: 胡向东

Diagnostic value of ultrasound combined with texture analysis in differentiating benign and malignant breast nodules

Meiling Chong1, Baixue Shi1, Xi Zhang2, Linxue Qian1, Xiangdong Hu1,()   

  1. 1. Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
    2. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2019-07-01 Published:2019-08-01
  • Corresponding author: Xiangdong Hu
  • About author:
    Corresponding author: Hu Xiangdong, Email:
引用本文:

种美玲, 时白雪, 张禧, 钱林学, 胡向东. 超声联合纹理分析对乳腺结节良恶性的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2019, 16(08): 581-585.

Meiling Chong, Baixue Shi, Xi Zhang, Linxue Qian, Xiangdong Hu. Diagnostic value of ultrasound combined with texture analysis in differentiating benign and malignant breast nodules[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(08): 581-585.

目的

以乳腺结节的灰阶超声及剪切波弹性超声影像为基础,分析超声图像的纹理特征,探索常规超声联合纹理分析对乳腺结节良恶性的诊断价值。

方法

前瞻性收集2018年8月至2018年12月于首都医科大学附属北京友谊医院常规超声检查发现乳腺结节并获得病理诊断的患者113例,共113个结节。所有患者均行常规超声及剪切波弹性成像检查,并对113个乳腺结节依据乳腺影像报告和数据系统(BI-RADS)进行分类;对超声图像进行纹理分析,获得纹理特征参数并建立诊断模型。以病理结果为"金标准",分析纹理特征诊断模型、常规超声联合纹理特征诊断模型对乳腺结节良恶性的诊断价值。

结果

以乳腺结节穿刺病理结果为"金标准",纹理分析诊断乳腺结节良恶性的敏感度、特异度、阳性预测值、阴性预测值及准确性分别为0.64、0.91、0.75、0.86、0.83,ROC曲线下面积为0.77;常规超声与纹理分析联合方法诊断乳腺结节良恶性的敏感度、特异度、阳性预测值、阴性预测值及准确性分别为0.88、0.85、0.71、0.94、0.86,ROC曲线下面积为0.86。联合诊断的ROC曲线下面积高于纹理分析,差异有统计学意义(Z=2.133,P=0.03)。采用常规超声联合纹理分析方法,90.0%(72/80)的BI-RADS 4a类乳腺结节可以降级为BI-RADS 3类,病理结果显示,降级为BI-RADS 3类的乳腺结节中94.4%(68/72)为良性结节。

结论

常规超声联合纹理分析对乳腺结节良恶性有较好的诊断效能,可减少不必要的有创性检查,具有良好的应用前景。

Objective

To explore the diagnostic value of routine ultrasonography combined with texture analysis in breast nodules based on their gray-scale ultrasound and shear-wave elastography images.

Methods

From August 2018 to December 2018, 113 patients with 113 breast nodules were prospectively included, and the breast nodules were found by routine ultrasonography and diagnosed by pathology. All patients underwent conventional ultrasound and shear wave elastography, and 113 breast nodules were classified according to Breast Imaging Reporting and Data System (BI-RADS). Texture feature parameters were obtained through texture analysis of ultrasound images and a diagnostic model was established. Using pathological results as the "golden standard", the diagnostic value of the texture feature diagnostic model and routine ultrasonography combined with the texture feature diagnostic model for benign and malignant breast nodules was analyzed.

Results

Using the pathological results of puncture specimens of breast nodules as the "golden standard", the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of texture analysis in the diagnosis of benign and malignant breast nodules were 0.64, 0.91, 0.75, 0.86, and 0.83, respectively, and the area under the ROC curve (AUC) was 0.77. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of routine ultrasonography combined with texture analysis in the diagnosis of benign and malignant breast nodules were 0.88, 0.85, 0.71, 0.94, and 0.86, respectively, and the AUC was 0.86. The AUC of the combined diagnosis was significantly higher than that of texture analysis (Z=2.133, P=0.03). Based on the combined diagnosis, 90.0% (72/80) of BI-RADS 4a breast nodules could be degraded to BI-RADS 3. Pathological results showed that 94.4% (68/72) of the breast nodules degraded to BI-RADS 3 were benign.

Conclusion

Conventional ultrasound combined with texture analysis has better diagnostic efficacy for benign and malignant breast nodules. The combined diagnosis can reduce needless puncture and has good application prospects.

图1 纹理分析、灰阶超声联合纹理分析诊断乳腺结节良恶性的ROC曲线。纹理分析的ROC曲线下面积为0.77;联合诊断的ROC曲线下面积为0.86
表1 纹理分析、联合方法对113个乳腺结节良恶性的诊断结果与病理学诊断结果比较(个)
表2 纹理分析与联合方法对113个乳腺结节良恶性的诊断效能分析(%)
图2 患者,女性,46岁,右侧乳房发现一低回声结节,乳腺结节的超声检查、剪切波弹性检查及病理检查图像。图a为常规超声显示乳腺结节形态欠规则(箭头所示),因此诊断为BI-RADS 4a类;图b为剪切波弹性图像,基于灰阶超声及剪切波弹性图像的纹理分析判断该结节为良性,因此将其降级为BI-RADS 3类;图c为穿刺病理结果提示该结节为导管内乳头状瘤(HE ×10);BI-RADS为乳腺影像报告和数据系统
1
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
2
Torre LA, Bray F, SIiegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.
3
Lee CH. Screening mammography: proven benefit, continued controversy [J]. Radiol Clin N Am, 2002, 40(3): 395-407.
4
Yoshida H, Casalino DD, Keserci B, et al. Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images [J]. Phys Med Biol, 2003, 48(22): 3735-3753.
5
Gómez-Flores W, Ruiz-Ortega BA. New Fully Automated Method for Segmentation of Breast Lesions on Ultrasound Based on Texture Analysis [J]. Ultrasound Med Biol, 2016, 42(7): 1637-1650.
6
D′Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, breast imaging reporing and data system [M]. Reston, Va: American College of Radiology, 2013.
7
Haralick RM, Shanmuga K, Dinstein I. Textural features for image classification [J]. IEEE Trans Syst Man Cybern, 1973, 3(6): 610-621.
8
Valckx FM, Thijssen JM. Characterization of echographic image texture by cooccurrence matrix parame- ters [J]. Ultrasound Med Biol, 1997; 23(4): 559-571.
9
Friedman JH. Greedy function approximation: A gradient boosting machine [J]. Ann Stat, 2000, 29(5): 1189-1232.
10
Bhatia KS, Lee YY, Yuen EH, et al. Ultrasound elastography in the head and neck. Part II. Accuracy for malignancy [J]. Cancer Imaging, 2013, 13(2): 260-276.
11
Evans A, Whelehan P, Thomson K, et al. Quantitative shear wave ultrasound elastography: Initial experience in solid breast masses [J]. Breast Cancer Res, 2010, 12(6): R104.
12
Tomita F, Tsuji S. Computer Analysis of Visual Textures [M]. Boston: Springer, 1990: 13-36.
13
Huang C, He Q, Huang M, et al. Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An In Vivo Feasibility Study Validated by Magnetic Resonance Imaging [J]. Ultrasound Med Biol, 2017, 43(4): 817-830.
14
Tan M, Mariapun S, Yip CH, et al. A novel method of determining breast cancer risk using parenchymal textural analysis of mammography images on an Asian cohort [J]. Phys Med Biol, 2019, 64(3): 035016.
15
Bhatia KS, Lam AC, Pang SW, et al. Feasibility Study of Texture Analysis Using Ultrasound Shear Wave Elastography to Predict Malignancy in Thyroid Nodules [J]. Ultrasound Med Biol, 2016, 42(7): 1671-1680.
16
Soltaninejad M, Yang G, Lambrou T, et al. Supervised Learning based Multimodal MRI Brain Tumour Segmentation using Texture Features from Supervoxels [J]. Comput Meth Prog Bio, 2018, 157(4): 69-84.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[6] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[7] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[8] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[9] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[10] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[11] 席芬, 张培培, 孝梦甦, 刘真真, 张一休, 张璟, 朱庆莉, 孟华. 乳腺错构瘤的临床与超声影像学特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 505-510.
[12] 余晓青, 高欣, 罗文培, 杨露. BI-RADS 4类结节患者的乳腺癌风险预测模型[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 217-223.
[13] 钱警语, 郑明明. 《2024意大利妇产科学会非侵入性和侵入性产前诊断指南》解读[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 486-492.
[14] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[15] 陈秀晓, 隋文倩, 王珉鑫, 吴圆圆. 腹股沟斜疝并腹腔游离体超声表现一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 516-517.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?