切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (06) : 583 -589. doi: 10.3877/cma.j.issn.1672-6448.2021.06.008

浅表器官超声影像学

神经动态超声弹性成像的三维有限元分析
江宇轩1, 刘文丽2, 武会娟2, 方晨2, 钱嘉林2,()   
  1. 1. 100084 北京,清华大学工程力学系生物力学研究所
    2. 100094 北京市理化分析测试中心
  • 收稿日期:2020-05-25 出版日期:2021-06-01
  • 通信作者: 钱嘉林
  • 基金资助:
    国家自然科学基金面上项目(11972206); 北京市科学技术研究院市级财政项目(PXM2019_178305_000019)

Three-dimensional finite element analysis of dynamic ultrasound elastography of human nerves

Yuxuan Jiang1, Wenli Liu2, Huijuan Wu2, Chen Fang2, Jialin Qian2,()   

  1. 1. Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University,Beijing 100084, China
    2. Beijing Center for Physical and Chemical Analysis, Beijing 100094, China.
  • Received:2020-05-25 Published:2021-06-01
  • Corresponding author: Jialin Qian
引用本文:

江宇轩, 刘文丽, 武会娟, 方晨, 钱嘉林. 神经动态超声弹性成像的三维有限元分析[J]. 中华医学超声杂志(电子版), 2021, 18(06): 583-589.

Yuxuan Jiang, Wenli Liu, Huijuan Wu, Chen Fang, Jialin Qian. Three-dimensional finite element analysis of dynamic ultrasound elastography of human nerves[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(06): 583-589.

目的

探讨神经周围复杂力学环境对动态超声弹性成像定量表征神经剪切模量的影响。

方法

针对不同直径的神经,通过建立三维有限元模型分析神经周围力学环境与沿神经轴向传播的弹性波群速度的关系。

结果

神经截面半径为1.0 mm时,轴向导波群速度较基于神经材料用经典体波理论给出的剪切波波速约减低20%;而当神经的截面半径为1.5 mm和2.0 mm时,根据上述波速分析方法得到的轴向导波群速度趋近于神经材料沿纤维方向的剪切波波速。神经的截面半径为2.0 mm时,当肌腱的轴向剪切模量

μLT
在较大范围内变化时,其对神经内轴向导波群速度影响较小,并且导波群速度趋近于体波理论给出的神经材料沿神经纤维方向剪切波的理论波速;而其他周边软组织的剪切模量
μ
为2 kPa时,神经内轴向导波群速度较体波理论预测的神经材料沿纤维方向的剪切波速度约提高17%;当剪切模量
μ
为5.88 kPa和10 kPa时导波群速度和剪切波波速接近。

结论

对平均直径3 mm以上的神经,且神经横截面内弹性波速度不远大于周围组织内弹性波速度的前提下,采用各向异性介质中的体波理论可以较为准确地反演沿神经轴向的剪切模量;否则采用仪器植入的经典公式得出的剪切模量误差可达到40%。

Objective

To investigates the effect of surrounding soft tissues on the mechanical characterization of human nerves by dynamic ultrasound elastography.

Methods

A three-dimensional finite element model was built to explore the correlation between the group velocities of elastic waves along the nerve fibers and the mechanical properties of surrounding soft tissues for nerves with different diameters.

Results

When the radius of the nerve was 1.0 mm, the axially guided wave group velocity was about 20% lower than the shear wave velocity based on the classical body wave theory of neural materials; when the radius of the nerve was 1.5 mm and 2.0 mm, the axial guided wave group velocity obtained by the above wave velocity analysis method was close to the shear wave velocity of the nerve along the fiber direction. When the cross-sectional radius of the nerve was 2.0 mm, if the axial shear modulus of the tendon

μLT
varied in a large range, it had little effect on the axial guided wave group velocity of the nerve, and the guided wave group velocity approached the shear wave velocity of the nerve material along the fiber direction; when the shear modulus of other peripheral soft tissues
μ
was 2 kPa, the axial guided wave group velocity in the nerve was about 17% higher than the shear wave velocity of the nerve material along the fiber direction predicted by the body wave theory; when the shear modulus
μ
was 5.88 kPa and 10 kPa, the guided wave group velocity was close to the shear wave velocity.

Conclusions

Our results show that the body wave theory for the shear wave propagating in an transversely isotropic solid can be used to infer the shear modulus along axial direction of a nerve when the diameter of a nerve d is greater than 3 mm and the wave velocities in the cross-section of a nerve are not much greater than those in surrounding soft tissues; otherwise, the error in the identified shear modulus of a nerve with the method involved in the common-used instrument can be up to 40%.

图1 人体腕管处正中神经有限元模型建立的几何构型。图a为有限元模型的二维剖面图(R为模型半径,r为正中神经半径);图b为人体经腕管断层学图像(图片引自《人体断层解剖学图谱》16),腕部结构等效为白色圈内的结构
图2 模拟声辐射力的激励方式。图a为实验示意图;图b为有限元模型载荷示意图(f为体力矢量;l为模型的轴向长度,取值为30 mm)
图3 正中神经有限元分析模型中3个不同时刻切面内的质点速度场信息。图a为 t=0.2 ms的质点速度场;图b为 t=1 ms的质点速度场;图c为 t=2 ms的质点速度场
图4 正中神经有限元分析模型的波速提取方法。图a为采样点及一维互相关的窗选取(
d
为像素点之间的距离);图b为归一化v2-t);图c为归一化v2+t);图d为归一化互相关系数
图5 正中神经有限元分析模型的波速分析方法。图a,c示在白色框内对质点速度场逐点进行一维互相关运算,得到相应区域的二维波速分布图;图b示在有限元的不同算例中,选定相同的波速分析点,波速分析点(图中白点)与神经正中心位置(图中黄点,即声辐射力幅值最强处)的距离δ=4 mm;图c为有限元得到的波速分布场,提取得到的波速为5.66 m/s;图d为实验中得到的波速分布场(图片引自Eur Radiol,2014,24(2):434-440.5),与有限元结果基本一致
图6 神经几何半径变化对波速的影响。当神经半径为1.0 mm、1.5 mm和2.0 mm时,对应的波速分别为5.04 m/s、5.47 m/s和5.66 m/s
图7 肌腱轴向剪切模量变化对波速的影响(神经半径为2.0 mm)。当轴向剪切模量为150 kPa、241 kPa和350 kPa时,对应的波速分别为5.77 m/s、5.66 m/s和5.69 m/s
图8 神经周围其他软组织剪切模量变化对波速的影响(神经半径为2.0 mm)。当剪切模量为2 kPa、5.88 kPa、10 kPa时,对应的波速分别为6.38 m/s、5.66 m/s和5.88 m/s
1
Naples GG, Mortimer JT, Scheiner A, et al. A spiral nerve cuff electrode for peripheral nerve stimulation [J]. IEEE Trans Biomed Eng, 1988, 35 (11): 905-916.
2
Cuoco F, Durand DM. Measurement of external pressures generated by nerve cuff electrodes [J]. IEEE Trans Rehab Eng, 2000, 8 (1): 35-41.
3
Lundborg G, Myers R, Powell H. Nerve compression injury and increased endoneurial fluid pressure: a "miniature compartment syndrome" [J]. J Neurol Neurosurg Psychiatry, 1983, 46 (12): 1119-1124.
4
Miyamoto H, Halpern EJ, Kastlunger M, et al. Carpal tunnel syndrome: diagnosis by means of median nerve elasticity—improved diagnostic accuracy of US with sonoelastography [J]. Radiology, 2014, 270 (2): 481-486.
5
Kantarci F, Ustabasioglu FE, Delil S, et al. Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome [J]. Eur Radiol, 2014, 24 (2): 434-440.
6
Orman G, Ozben S, Huseyinoglu N, et al. Ultrasound elastographic evaluation in the diagnosis of carpal tunnel syndrome: initial findings [J]. Ultrasound Med Biol, 2013, 39 (7): 1184-1189.
7
刘晓月, 陈雪琪, 吕珂. 腕管综合征的超声诊断进展 [J/OL]. 中华医学超声杂志(电子版), 2020, 17 (3): 279-282.
8
周静, 姜立新. 超声评估糖尿病周围神经病变的研究进展 [J]. 声学技术, 2019, 38 (3): 307-311.
9
黄月, 冯肖肖, 朱梅. 剪切波超声弹性成像评估糖尿病周围神经病变 [J]. 西部医学, 2020, 32 (4): 567-571.
10
张卫平, 陈莉, 王婧玲, 等. SWE应用于原发性干燥综合征周围神经病变的研究 [J]. 中国超声医学杂志, 2019, 35 (5): 454-457.
11
Gennisson JL, Deffieux T, Fink M, et al. Ultrasound elastography: principles and techniques [J]. Diagn Interv Imaging, 2013, 94 (5): 487-495.
12
李国洋, 郑阳, 刘燕霖, 等. 动态超声弹性成像的现状及展望 [J/CD]. 中华医学超声杂志(电子版), 2019, 16 (8): 561-564.
13
李健明, 胡向东, 张岩峰, 等. 剪切波弹性成像的影响因素分析 [J/CD]. 中华医学超声杂志(电子版), 2019, 16 (8): 565-567.
14
Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics [J]. Ultrasound Med Biol, 1998, 24 (9): 1419-1435.
15
Rose JL. Ultrasonic guided waves in solid media [M]. Cambridge: Cambridge university press, 2014.
16
刘树伟. 人体断层解剖学图谱 [M]. 济南: 山东科学技术出版社, 2003.
17
Campbell EO, Samlan RA, McMullen NT, et al. Developmental changes in the connective tissues of the porcine recurrent laryngeal nerve [J]. J Anat, 2013, 222 (6): 625-633.
18
Rouze NC, Wang MH, Palmeri ML, et al. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium [J]. J Biomech, 2013, 46 (16): 2761-2768.
19
Li GY, Zheng Y, Liu Y, et al. Elastic Cherenkov effects in transversely isotropic soft materials-I: theoretical analysis, simulations and inverse method [J]. J Mech Phys Solids, 2016, 96: 388-410.
20
Guo J, Hirsch S, Scheel M, et al. Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: application to in vivo lower leg muscles [J]. Magn Reson Med, 2016, 75 (4): 1537-1545.
21
Andrade RJ, Nordez A, Hug F, et al. Non-invasive assessment of sciatic nerve stiffness during human ankle motion using ultrasound shear wave elastography [J]. J Biomech, 2016, 49 (3): 326-331.
22
Aubry S, Nueffer J-P, Tanter M, et al. Viscoelasticity in achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography [J]. Radiology, 2015, 274 (3): 821-829.
23
Yao Y, Erdemir A, Li Z-M. Finite element analysis for transverse carpal ligament tensile strain and carpal arch area [J]. J Biomech, 2018, 73: 210-216.
24
Palmeri ML, Nightingale KR. Acoustic radiation force-based elasticity imaging methods [J]. Interface focus, 2011, 1 (4): 553-564.
25
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2014, 61 (1): 102-119.
26
Hansen HH, Pernot M, Chatelin S, et al. Shear wave elastography for lipid content detection in transverse arterial cross-sections [C]. 2015 IEEE International Ultrasonics Symposium (IUS), 2015: 1-4.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[3] 郭云云, 解翔, 彭梅, 姜凡, 毕玉, 何年安, 胡蕾, 杨杨, 王涛, 石玉洁, 陈冬冬. ACR-TIRADS与C-TIRADS分类分别联合二维剪切波弹性成像对甲状腺结节分类的诊断效能——多中心回顾性研究[J]. 中华医学超声杂志(电子版), 2023, 20(05): 511-516.
[4] 程广文, 丁红, 陈坤, 张祯, 黄翀, 张继明. 实时双幅联合弹性成像在慢性肝病肝纤维化与炎症分层诊断中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(01): 63-69.
[5] 戴茜, 叶磊, 叶山东, 奚宇, 江姗姗, 汪茜, 周晓玉, 胡媛君, 王志平. 应用高频超声联合数字化软件定量分析诊断2型糖尿病正中神经病变[J]. 中华医学超声杂志(电子版), 2022, 19(07): 688-693.
[6] 壮健, 潘昌杰, 李晓琴, 于梦霞, 张超, 朱韦文. 剪切波弹性成像技术评估子痫前期胎盘弹性的临床价值[J]. 中华医学超声杂志(电子版), 2022, 19(07): 660-666.
[7] 唐远姣, 刘伊铃, 郭瑞倩, 钟琳, 邱逦. 健康人群四肢近端肌肉剪切波弹性成像测量的初步研究[J]. 中华医学超声杂志(电子版), 2022, 19(06): 541-547.
[8] 权赫磊, 罗渝昆, 王月香, 朱亚琼, 姜波. 高频超声在腕管综合征病因学评价中的应用[J]. 中华医学超声杂志(电子版), 2022, 19(05): 454-458.
[9] 李帅, 樊秀齐, 康春松, 薛继平, 苗俊旺. 甲状腺结节杨氏模量最大值的影响因素及其对结节性质的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2021, 18(12): 1185-1190.
[10] 钟华, 巫燕玲, 陈英, 周玉婷, 曾梅青, 骆婕, 杨焰. 二维超声联合实时剪切波弹性成像评估腹直肌分离[J]. 中华医学超声杂志(电子版), 2021, 18(09): 847-853.
[11] 强坤坤, 罗红. 杜氏肌营养不良症患儿的高频超声与剪切波弹性成像诊断研究现状及前景[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 162-167.
[12] 李文臣, 李日, 韩霖, 张舒岩. 正中神经电刺激对创伤性颅脑损伤昏迷促醒作用的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 269-275.
[13] 何慧灵, 张宣宣, 张兰, 吴晓瑾, 姜美娟, 陈剑. 乳腺周边组织进行剪切波弹性成像诊断结节良恶性的价值研究[J]. 中华临床医师杂志(电子版), 2022, 16(04): 319-325.
[14] 张宏, 秦丽, 蔺春红, 魏秋菊, 苗艳梅. 浸润性乳腺癌多模态超声特征与临床病理特征的关系分析[J]. 中华临床医师杂志(电子版), 2021, 15(09): 652-659.
[15] 王洪军, 李朝密, 张恒, 刘鲲. 永存正中动脉并正中神经双支变异的超声诊断特征分析[J]. 中华诊断学电子杂志, 2023, 11(04): 244-248.
阅读次数
全文


摘要