切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (02) : 177 -181. doi: 10.3877/cma.j.issn.1672-6448.2021.02.010

所属专题: 文献

浅表器官超声影像学

人工智能S-Detect技术结合钙化特征对甲状腺结节的诊断价值
方明娣1, 彭梅1,(), 毕玉1   
  1. 1. 230601 合肥,安徽医科大学第二附属医院超声诊断科
  • 收稿日期:2020-03-02 出版日期:2021-02-01
  • 通信作者: 彭梅
  • 基金资助:
    安徽省重点研究与开发计划项目(201904a07020068)

Value of artificial intelligent S-Detect technique combined with calcification characteristics in differential diagnosis of thyroid nodules

Mingdi Fang1, Mei Peng1,(), Yu Bi1   

  1. 1. Department of Ultrasound, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601 , China
  • Received:2020-03-02 Published:2021-02-01
  • Corresponding author: Mei Peng
引用本文:

方明娣, 彭梅, 毕玉. 人工智能S-Detect技术结合钙化特征对甲状腺结节的诊断价值[J]. 中华医学超声杂志(电子版), 2021, 18(02): 177-181.

Mingdi Fang, Mei Peng, Yu Bi. Value of artificial intelligent S-Detect technique combined with calcification characteristics in differential diagnosis of thyroid nodules[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(02): 177-181.

目的

探讨人工智能S-Detect技术结合钙化特征在甲状腺结节良恶性诊断中的价值。

方法

选取2019年7月至2020年1月于安徽医科大学第二附属医院行甲状腺超声检查并行手术治疗的94例患者(94个甲状腺结节)。采用常规超声和S-Detect技术对94例患者的94个甲状腺结节进行检查。以术后病理结果作为金标准,分析超声医师、S-Detect及S-Detect结合钙化特征对甲状腺结节的诊断效能。

结果

经手术病理证实,94个甲状腺结节中,良性37个,恶性57个。超声医师诊断甲状腺结节良恶性的敏感度91.2%,特异度91.8%,准确性91.4%;S-Detect诊断甲状腺结节良恶性的敏感度96.4%,特异度81.1%,准确性90.4%;S-Detect结合钙化特征诊断甲状腺结节的敏感度98.2%,特异度81.8%,准确性92.5.%。超声医师、S-Detect技术及S-Detect结合钙化特征诊断甲状腺结节的ROC曲线下面积分别为0.879、0.864、0.890。S-Detect结合钙化特征的诊断效能优于单独应用常规超声和S-Detect技术(Z=2.020,P=0.043;Z=2.231,P=0.026)。

结论

S-Detect技术结合钙化特征可提高甲状腺结节的诊断效能,值得临床推广应用。

Objective

To assess the value of S-Detect combined with calcification characteristics in the diagnosis of benign and malignant thyroid nodules.

Methods

Ninety-four patients with 94 thyroid nodules were examined by conventional ultrasonography and S-Detect technique at the Second Affiliated Hospital of Anhui Medical University from July 2019 to February 2020, and the diagnostic efficacy of conventional ultrasound, S-Detect,and S-Detect combined with calcification characteristics were analyzed according to the postoperative pathological results.

Results

As confirmed by surgical pathology, of 94 thyroid nodules in 94 patients, 37 were benign and 57 were malignant. The sensitivity, specificity, and accuracy of conventional ultrasound, S-Detect, and S-Detect combined with calcification characteristics in the differential diagnosis of benign and malignant thyroid nodules were 91.2%, 91.8%, and 91.4%, 96.4%, 81.1%, and 90.4%, and 98.2%, 81.8%, and 92.5%, respectively. The areas under the ROC curves of conventional ultrasound, S-Detect, and S-Detect combined with calcification characteristics were 0.879, 0.864, and 0.890, respectively, with the value of S-Detect combined with calcification characteristics being significantly higher than those of conventional ultrasound and S-Detect (Z=2.020, P=0.043; Z=2.231, P= 0.026).

Conclusions

The combination of S-Detect and calcification characteristics can improve the diagnostic efficiency for thyroid nodules.

图1 甲状腺恶性结节超声人工智能检测图。S-Detect自动识别并包络结节,分析结节特征为实性、低回声、垂直位、边缘呈微分叶及毛刺、形态不规则,最后得出结节可能恶性的诊断
图2 甲状腺良性结节超声人工智能检测图。S-Detect自动识别并包络结节,分析结节特征为混合性、高回声/等回声、平行位、边缘光滑、形态规则,最后得出结节可能良性的诊断
表1 超声医师、S-Detect及S-Detect结合钙化特征与病理结果的比较(例)
图3 超声医师、S-Detect与S-Detect结合钙化特征诊断甲状腺结节良恶性的ROC曲线
1
Powers AE, Marcadis AR, Lee M, et al. Changes in trends in thyroid cancer incidence in the United States,1992 to 2016 [J]. JAMA, 2019, 322(24): 2440-2441.
2
Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer [J]. Thyroid, 2016, 26(1): 128-133.
3
毕腾云, 白文坤, 胡兵. 甲状腺超声钙化形态与甲状腺癌的关系 [J]. 中国超声医学杂志, 2016, 32(6): 481-483.
4
房世保, 仲艳密, 宁春平, 等. 甲状腺癌微钙化的超声分型及临床价值 [J]. 中华超声影像学杂志, 2015, 24(2): 175-176.
5
Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US featuresof nodules: a step inestablishing better stratification of cancer risk [J]. Radiology, 2011, 260(3): 892-899.
6
Chang TC. The role of computer-aided detection and diagnosis system in the differential diagnosis of thyroid lesions in ultrasonography [J]. J Med Ultrasound, 2015, 23(4): 177-184.
7
Choi YJ, Baek JH, Park HS, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis andcharacterization of thyroid nodules on ultrasound:initial clinical assessment [J]. Thyroid, 2017, 27(4): 546-552.
8
Mazurowski MA, Buda M, Saha A, et al. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI [J]. J Magn Reson Imaging, 2019, 49(4): 949-954.
9
Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thyroid nodules seen on us images: deep learning may match performance of radiologists [J] . Radiology, 2019, 18(13): 1-7.
10
王丹, 花瞻, 武敬平, 等. 甲状腺结节的超声人工智能诊断 [J]. 中国超声医学杂志, 2019, 35(12): 1070-1072.
11
韩红, 俞清, 赵磊, 等. 超声S-Detect技术在甲状腺肿瘤诊断中的初步应用 [J]. 中华超声影像学杂志, 2018, 27(1): 28-30.
12
Grant EG, Tessler FN, Hoang JK, et al. Thyroid ultrasound reporting lexicon: white paper of the ACR thyroid imaging, reporting and data system (TIRADS) committee [J]. J Am Coll Radiol, 2015, 12(12): 1272-1279.
13
徐上妍, 詹维伟, 周建桥, 等. 超声评估甲状腺结节内钙化的初步探讨 [J]. 中国超声医学杂志, 2012, 28(9): 789-792.
14
杨浩, 尹家保, 吕瑾玉, 等. 超声扫描甲状腺结节钙化特征的临床意义 [J/CD].中华医学超声杂志(电子版), 2011, 8(9): 2038-2041.
15
华翠萍, 王建伟, 郭智兴, 等. 超声在甲状腺结节合并环状钙化的良恶性诊断中的应用 [J/CD]. 中华医学超声杂志(电子版), 2017, 14(10): 755-759.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[3] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[4] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[5] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[6] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[7] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[8] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[9] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[10] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[11] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[12] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要