切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (04) : 424 -429. doi: 10.3877/cma.j.issn.1672-6448.2023.04.008

心血管超声影像学

基于深度学习的超声心动图自动识别节段性室壁运动异常的研究
杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑()   
  1. 100048 北京,解放军总医院第六医学中心心内科;100039 北京,解放军总医院大数据中心
    100039 北京,解放军医学院
    101310 北京,北京安德医智科技有限公司
    100142 北京,解放军总医院第四医学中心健康医学科
    100048 北京,解放军总医院第六医学中心心内科
    100039 北京,解放军总医院大数据中心
  • 收稿日期:2021-11-02 出版日期:2023-04-01
  • 通信作者: 何昆仑
  • 基金资助:
    北京市自然科学基金(7202198); 国家自然科学基金(82202265)

Automatic detection of regional wall motion abnormalities by echocardiography based on deep learning

Feifei Yang, Xixiang Lin, Yixin Chen, Qiushuang Wang, Liwei Zhang, Xu Chen, Meiqing Zhang, Shuhua Wang, Kunlun He()   

  1. Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China; Medical Big Data Research Center, Chinese PLA General Hospital, 100039 Beijing, China
    Medical School of Chinese PLA, 100039 Beijing, China
    BioMind Technology, Zhongguancun Medical Engineering Center, 101310 Beijing, China
    Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
    Medical Big Data Research Center, Chinese PLA General Hospital, 100039 Beijing, China
  • Received:2021-11-02 Published:2023-04-01
  • Corresponding author: Kunlun He
引用本文:

杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J/OL]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.

Feifei Yang, Xixiang Lin, Yixin Chen, Qiushuang Wang, Liwei Zhang, Xu Chen, Meiqing Zhang, Shuhua Wang, Kunlun He. Automatic detection of regional wall motion abnormalities by echocardiography based on deep learning[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(04): 424-429.

目的

探讨基于深度学习算法的超声心动图自动识别节段性室壁运动异常的效能。

方法

本研究回顾性收集了2015年6月至2019年9月在解放军总医院第四医学中心门诊及住院患者的超声心动图2274例作为训练集和验证集,其中包括心肌梗死患者1137例;另于2021年3月至2021年5月前瞻性收集1324例连续性超声心动图影像作为测试集,其中包括105例心肌梗死患者。本研究分为三个步骤,包括切面识别、左心室心肌分割以及室壁运动异常检测,并进一步比较了模型输入多个切面与输入单个切面对节段性室壁运动异常识别效能的差异。

结果

本研究神经卷积网络模型,对心尖四腔心切面(A4C),心尖两腔心切面(A2C)和心尖三腔心切面(A3C)的识别准确性分别为95%、98%、94%。心尖三个切面对左心室内膜分割的准确性均优于对心外膜的分割,且对心尖四腔心切面的分割准确性最佳(89.16%)。无论在内部验证集,还是外部测试集中,模型输入心尖三个切面对节段性室壁运动异常的识别效能均优于仅输入心尖四腔心单切面(ROC曲线下面积:0.942 vs 0.897;0.937 vs 0.828)。

结论

深度学习技术不仅可以自动识别超声心动图动态视频图像,并且可以识别节段性室壁运动异常,深度学习模型可以应用于临床实践,有助于提高超声的诊断效率。

Objectives

To investigate the efficiency of a deep learning (DL) framework to automatically analyze echocardiographic videos in detecting regional wall motion abnormalities.

Methods

A total of 2274 echocardiographic videos of outpatients and inpatients in the Fourth Medical Center of the PLA General Hospital from June 2015 to September 2019 were retrospectively collected as training and validation datasets, and 324 consecutive echocardiographic videos were prospectively collected as the test set, including 105 patients with myocardial infarction. We developed a three-stage DL framework, including 1) view classification, 2) left ventricular myocardial segmentation, and 3) regional wall motion abnormality detection. The difference in the recognition efficiency of segmental wall motion anomalies between the model based on videos in multiple views and those in a single view was then compared.

Results

The classification accuracy of the neural convolutional network model was 95%, 98%, and 94% for apical four chamber view (A4C), apical two chamber view (A2C), and apical three chamber view (A3C) videos, respectively. The accuracy of left ventricular endocardial segmentation based on videos in the three apical views was better than that of epicardial segmentation, and the segmentation result based on apical four chamber view videos was the best (89.16%). In both the internal validation dataset and external test dataset, the performance of the model based on videos in the three apical views was significantly better than that based on the single apical four chamber view videos (area under the curve: 0.942 vs 0.897; 0.937 vs 0.828).

Conclusions

The DL algorithm can not only automatically analyze echocardiographic videos, but also detect regional wall motion abnormalities. DL models can be applied in clinical practice to improve the diagnostic efficiency of echocardiography.

图1 节段性室壁运动识别模型结构示意图注:R2plus1D为残差网络结构:R=residual残差;D=dimension 维度;Feature Extrator为特征提取器;Adaptive avgPool为自适应池化;Classfication Module为分类模块;Normal为正常人;MI为心肌梗死患者
表1 训练集和测试集心肌梗死患者一般临床资料
图2 归一化混淆矩阵注:A4C-2D为心尖四腔心二维切面;A2C-2D为心尖二腔心二维切面;A3C-2D为心尖三腔心二维切面
表2 模型对于超声心动图切面分类以及左心室分割的效能分析
表3 模型输入心尖三个切面与输入心尖四腔心单切面识别节段性室壁运动异常的效能比较(内部验证集)
表4 模型输入心尖三个切面与输入心尖四腔心单切面识别节段性室壁运动异常的效能比较(外部测试集)
图3 心尖三个切面与心尖四腔心单切面识别室壁运动异常的ROC曲线(外部测试集)
1
Das N, Topalovic M, Janssens W. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential[J]. Curr Opin Pulm Med, 2018, 24(2): 117-123.
2
Rajkomar A, Dean J, Kohane I. Machine learning in medicine[J]. N Engl J Med, 2019, 380(26): 1347-1358.
3
Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2018, 39(2):119-177.
4
Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography[J]. J Am Soc Echocardiogr, 2019, 32(1):1-64.
5
Tran D, Wang H, Torresani L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2018.
6
Grewal PS, Oloumi F, Rubin U, et al. Deep learning in ophthalmology: a review[J]. Can J Ophthalmol, 2018, 53(4): 309-313.
7
Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine[J]. N Engl J Med, 2016, 375: 1216-1219.
8
Alsharqi M, Woodward WJ, Mumith JA, et al. Artificial Intelligence and Echocardiography[J]. Echo Res Pract, 2018, 5(4): R115-R125.
9
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138(16): 1623-1635.
10
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.
[1] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[2] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[3] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[4] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[5] 王益佳, 周青, 曹省, 袁芳洁, 周妍, 张梅. 中国经胸超声心动图检查存图及报告质控现状分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 657-663.
[6] 莫莹, 李文秀, 李刚, 王霄芳, 王强, 丁文虹. 超声心动图在三尖瓣下移畸形中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 702-708.
[7] 曹雨欣, 毛卓君, 梁嘉赫, 伊江浦, 张泽凯, 马文帅, 陈云涛, 李晓倩, 张宇新, 曹铁生, 袁丽君. 3D打印心脏模型在模拟左心耳封堵术临床教学中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 602-607.
[8] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[9] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[10] 夏靖涵, 林凤娇, 王胰, 丁戈琦, 张清凤, 张红梅, 谢盛华, 李明星, 尹立雪, 李文华. 二尖瓣空间变化联合左心房应变对肥厚型心肌病合并左心室流出道梗阻的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 585-592.
[11] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[12] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[13] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[14] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?