切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (12) : 1223 -1230. doi: 10.3877/cma.j.issn.1672-6448.2023.12.001

心血管超声影像学

斑点追踪成像和组织多普勒同步成像对不同起搏模式下左心室心肌同步性的评估
孟庆国1, 唐艺加2, 王斯佳1, 周杰2, 冯天航3, 刘学兵1, 舒庆兰1, 邓燕1, 尹立雪1,(), 李春梅1   
  1. 1. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 四川省心血管病临床医学研究中心 国家心血管疾病临床医学研究中心分中心 四川省医学科学院·四川省人民医院心血管超声及心功能科
    2. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 四川省心血管病临床医学研究中心 国家心血管疾病临床医学研究中心分中心 四川省医学科学院·四川省人民医院心内科
    3. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 四川省心血管病临床医学研究中心 国家心血管疾病临床医学研究中心分中心 四川省医学科学院·四川省人民医院麻醉科
  • 收稿日期:2022-10-17 出版日期:2023-12-01
  • 通信作者: 尹立雪
  • 基金资助:
    四川省自然基金(2022NSFSC0662)

Evaluation of left ventricular myocardial synchrony under different pacing modes by speckle tracking imaging and tissue Doppler synchronous imaging

Qingguo Meng1, Yijia Tang2, Sijia Wang1, Jie Zhou2, Tianhang Feng3, Xuebing Liu1, Qinglan Shu1, Yan Deng1, Lixue Yin1,(), Chunmei Li1   

  1. 1. Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, National Center for Clinical Medical Research of Cardiovascular Diseases, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
    2. Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, National Center for Clinical Medical Research of Cardiovascular Diseases, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
    3. Department of Anesthesiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, National Center for Clinical Medical Research of Cardiovascular Diseases, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
  • Received:2022-10-17 Published:2023-12-01
  • Corresponding author: Lixue Yin
引用本文:

孟庆国, 唐艺加, 王斯佳, 周杰, 冯天航, 刘学兵, 舒庆兰, 邓燕, 尹立雪, 李春梅. 斑点追踪成像和组织多普勒同步成像对不同起搏模式下左心室心肌同步性的评估[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1223-1230.

Qingguo Meng, Yijia Tang, Sijia Wang, Jie Zhou, Tianhang Feng, Xuebing Liu, Qinglan Shu, Yan Deng, Lixue Yin, Chunmei Li. Evaluation of left ventricular myocardial synchrony under different pacing modes by speckle tracking imaging and tissue Doppler synchronous imaging[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(12): 1223-1230.

目的

应用二维斑点追踪成像和组织多普勒同步成像(TSI)技术探讨右心双腔室间隔起搏(RVSP)与希浦系统起搏(HPSP)模式下患者左心室心肌同步性。

方法

前瞻性选取2020年2月至2021年9月于四川省人民医院接受房室全能型心脏起搏器植入的患者43例,按照起搏器植入方式不同将其分为RVSP组20例,HPSP组23例。同期选取40例志愿者为对照组。获取左心室节段应变达峰时间、应变达峰时间离散度(PSD)及左心室心肌做功等参数值。对二维斑点追踪评估的左心室17节段应变达峰时间、组织多普勒TSI评估的左心室12节段应变达峰时间及心肌做功参数和四维应变参数进行组间比较分析。

结果

组织多普勒TSI模式:与对照组比较,HPSP组、RVSP组12(12/12)个节段应变达峰时间均增大(P均<0.05)。HPSP组与RVSP组比较,4(4/12)个节段差异存在统计学意义,基底前壁、中段前间隔、中段间隔和中段后壁应变达峰时间RVSP组大于HPSP组(P均<0.05)。二维斑点追踪模式:与对照组相比,HPSP组和(或)RVSP组13(13/17)个节段应变达峰时间均增大(P均<0.05)。HPSP组与RVSP组相比,11(11/17)个节段差异存在统计学意义,其中7个节段HPSP组的应变达峰时间大于RVSP组(P均<0.05)。同对照组相比,左心室心肌长轴应变、左心室整体心肌做功效率在RVSP组明显减低(P均<0.05),而HPSP组与正常对照组比较差异无统计学意义(P均>0.05)。PSD在对照组、HPSP组和RVSP组逐渐递增(P<0.05)。

结论

在起搏器植入后6个月至1年的短期随访过程中,HPSP可以使左心室心肌更加协调、高效做功,左心室同步性优于RVSP。与组织多普勒技术相比,二维斑点追踪技术能够同时评估左心室心尖各节段心肌同步参数且不受角度依赖,相对更具优势。

Objective

To investigate the advantages and disadvantages of left ventricular synchrony in patients with right ventricular double-chamber septal pacing (RVSP) and His-Purkinje system pacing (HPSP) using two-dimensional speckle tracking imaging and tissue synchrony imaging (TSI) techniques.

Methods

Forty-three patients who underwent atrioventricular universal pacemaker implantation at Sichuan Provincial People's Hospital from February 2020 to September 2021 were prospectively divided into an RVSP group (n=20) and an HPSP group (n=23). In the same period, 40 volunteers were selected as a control group. The dynamic two-dimensional grayscale and TSI images of the standard apical tri-plane section of each group were collected for three consecutive cardiac cycles, and the time to peak strain, peak strain dispersion (PSD), and the work of each segment of the left ventricle in the same cardiac cycle were obtained offline. The above parameters were analyzed and compared by taking the average of three cardiac cycles.

Results

With regard to TSI pattern, compared with the control group, the time to peak strain of 12 (12 /12) segments in both the HPSP group and RVSP group were increased (P<0.05 for all). There was a significant difference in the time to peak strain of 4 (4/12) segments between the HPSP group and RVSP group: The time to peak strain of the anterior basal wall, anterior septum of middle segment, middle septum, and posterior wall of middle segment in the RVSP group was longer than that in the HPSP group (P<0.05 for all). Two-dimensional speckle tracking imaging showed that compared with the control group, the time to peak strain of 13 segments in the HPSP group and/or RVSP group was increased (P<0.05). There was a significant difference in the time to peak strain of 11 (11/17) segments between the HPSP group and RVSP group, and the time to peak strain of 7 segments in the HPSP group was longer than that in the RVSP group (P<0.05 for all). Compared with the control group, the long-axis strain of the left ventricle and the overall myocardial work efficiency of the left ventricle decreased significantly in the RVSP group (P<0.05 for both), but there was no significant difference between the HPSP group and the normal control group (P>0.05 for both). PSD increased gradually and sequentially in the control group, HPSP group, and RVSP group (P<0.05).

Conclusion

During the short-term follow-up from 6 months to 1 year after pacemaker implantation, HPSP can make the left ventricular myocardium more coordinated and efficient, and the left ventricular synchronization is better than that with RVSP. Compared with TSI, two-dimensional speckle tracking technique can also simultaneously evaluate myocardial synchronization parameters of each segment of the left ventricular apex without angle dependence, which provides more comprehensive information for clinicians, suggesting that this technique has more advantages in evaluating synchronization.

图1 左心室17节段应变达峰时间牛眼图。图a为健康者;图b为希浦系统起搏患者;图c为右心双腔室间隔起搏患者;图a~c左心室整体长轴应变呈依次递减趋势,应变达峰时间离散度(PSD)呈依次递增趋势
图2 左心室17节段心肌做功参数图像。图a为健康者;图b为希浦系统起搏者;图c为右心双腔室间隔起搏者(左心室做功效率希浦系统起搏者与健康者接近,右心双腔室间隔起搏者则呈现减低趋势)
图3 左心室基底和中段12节段应变达峰时间牛眼图。图a为健康者;图b为希浦系统起搏者;图c为右心双腔室间隔起搏者;图a~c的左心室节段心肌达峰时间(同步性)逐渐变差
表1 正常组与起搏组的一般资料比较(
表2 正常组与起搏组17节段二维斑点追踪应变达峰时间比较(,ms)
表3 正常组与起搏组左心室基底和中段水平12节段组织多普勒TSI应变达峰时间比较(,ms)
表4 正常组与起搏组心肌做功参数及四维应变参数比较(
1
李秀娟, 付淑萍, 阮海东, 等. 超声心动图对左束支区域起搏电极定位及左心室收缩功能的评价 [J/OL]. 中华医学超声杂志(电子版), 2022, 19(2): 5.
2
孟庆国, 徐芸, 吴志霞, 等. 三维斑点追踪成像技术评估右心双腔间隔起搏对左心室功能的影响 [J]. 中国医学影像技术, 2018, 34(7): 1019-1023.
3
Huang W, Chen X, Su L, et al. A beginner's guide to permanent left bundle branch pacing [J]. Heart Rhythm, 2019, 16(12): 1791-1796.
4
Bhatt AG, Musat DL, Milstein N, et al. The Efficacy of His bundle pacing: lessons learned from implementation for the first time at an experienced electrophysiology center [J]. JACC Clin Electrophysiol, 2018, 4(11): 1397-1406.
5
Su L, Wu S, Wang S, et al. Pacing parameters and success rates of permanent His-bundle pacing in patients with narrow QRS: a single-centre experience [J]. Europace, 2019, 21(5): 763-770.
6
吴圣杰, 苏蓝, 黄伟剑. 希氏-浦肯野系统起搏的现状与展望 [J]. 中华心律失常学杂志, 2018, 22(2): 123-129.
7
李慧, 顾敏, 胡奕然, 等. 四维斑点追踪联合超声心动图分层应变技术评价不同部位起搏对左心室功能及同步性的影响[J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 135-142.
8
Huang Wn, Chen X, Su L, et al. A beginner's guide to permanent left bundle branch pacing [J]. Heart Rhythm, 2019, 16(12): 1791-1796.
9
中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会, 希氏-浦肯野系统起搏中国专家共识 [J]. 中华心律失常学杂志, 2021, 25(1): 10-36.
10
Hou X, Qian Z, Wang Y, et al. Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum [J]. Europace, 2019, 21(11): 1694-1702.
11
Padala SK, Master VM, Terricabras M, et al. Initial experience, safety, and feasibility of left bundle branch area pacing: a multicenter prospective study [J]. JACC Clin Electrophysiol, 2020, 6(14): 1773-1782.
12
严霜霜, 邓晓奇, 熊峰, 等. 二维斑点追踪技术评价左束支区域起搏早期左心室收缩功能及同步性 [J/OL]. 中华医学超声杂志(电子版), 2021,18 (4): 368-374.
13
Li Y, Chen K, Dai Y, et al. Left bundle branch pacing for symptomatic bradycardia: Implant success rate, safety, and pacing characteristics [J]. Heart Rhythm, 2019, 16(12): 1758-1765.
14
Guo J, Li L, Meng F, et al. Short-term and intermediate-term performance and safety of left bundle branch pacing [J]. J Cardiovasc Electrophysiol, 2020, 31(6): 1472-1481.
15
Su L, Wang S, Wu S, et al. Long-term safety and feasibility of left bundle branch pacing in a large single-center study [J]. Circ Arrhythm Electrophysiol, 2021, 14(2): e009261.
16
Huang W, Su L, Wu S, et al. A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block [J]. Can J Cardiol, 2017, 33(12): 1736.e1-1736.e3.
17
Jastrzębski M, Moskal P, Huybrechts W, et al. Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT): results from an international LBBAP collaborative study group [J]. Heart Rhythm, 2021, 19(1) : 13-21.
18
Vijayaraman P. Left bundle branch pacing optimized cardiac resynchronization therapy: a novel approach [J]. JACC Clin Electrophysiol, 2021, 7(8): 1076-1078.
19
Salden FCWM, Luermans JGLM, Westra SW, et al. Short-term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing [J]. J Am Coll Cardiol, 2020, 75(4): 347-359.
20
Vijayaraman P, Ponnusamy S, Cano Ó, et al. Left bundle branch area pacing for cardiac resynchronization therapy: results from the international LBBAP collaborative study group [J]. JACC Clin Electrophysiol, 2021, 7(2): 135-147.
21
Li X, Qiu C, Xie R, et al. Left bundle branch area pacing delivery of cardiac resynchronization therapy and comparison with biventricular pacing [J]. ESC Heart Fail, 2020, 7(4): 1711-1722.
22
Wang Y, Gu K, Qian Z, et al. The efficacy of left bundle branch area pacing compared with biventricular pacing in patients with heart failure:A matched case-control study [J]. J Cardiovasc Electrophysiol, 2020, 31(8): 2068-2077.
23
Galli E, John-Matthwes B, Rousseau C, et al. Value of myocardial work estimation in the prediction of response to cardiac resynchronization therapy [J]. J Am Soc Echocardiogr, 2018, 31(2): 220-230.
24
Vecera J, Penicka M, Eriksen M, et al. Wasted septal work in left ventricular dyssynchrony: a novel principle to predict response to cardiac resynchronization therapy [J]. Eur Heart J Cardiovasc Imaging, 2016, 17(6): 624-632.
25
Mafi-Rad M, Luermans JG, Blaauw Y, et al. Feasibility and acute hemodynamic effect of left ventricular septal pacing by transvenous approach through the interventricular septum [J]. Circ Arrhythm Electrophysiol, 2016, 9(3): e003344.
26
Zhang S, Zhou X, Gold MR. Left bundle branch pacing: JACC review topic of the week [J]. J Am Coll Cardiol, 2019, 74(24): 3039-3049.
27
Vijayaraman P, Subzposh FA, Naperkowski A, et al. Prospective evaluation of feasibility and electrophysiologic and echocardioimagedata characteristics of left bundle branch area pacing [J]. Heart Rhythm, 2019, 16(12): 1774-1782.
28
Merchant FM. Pacing-induced cardiomyopathy: just the tip of the iceberg? [J]. Eur Heart J, 2019, 40(44): 3649-3650.
29
王嫒嫒, 张连仲, 刘琳, 等. 峰值应变离散度评价原发性高血压患者左心室收缩同步性 [J]. 中国超声医学杂志, 2019, 35(7): 608-611.
30
Legong DP, Hoogslag GE, Piers SR, et al. The relationship between time from myocardial infarction, left ventricular dyssynchrony, and the risk for ventricular arrhythmia: speckle-tracking echocardioimagedata analysis [J]. J Am Soc Echocardiogr, 2015, 28(4): 470-477.
31
o Meng Q, Wang S, Yan S, et al. Evaluating the left ventricular hemodynamic phenomena of DDD septum pacemaker implants using vector flow mapping [J]. Echocardiography, 2020, 37(1): 77-85.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[3] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[4] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[5] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[6] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[7] 赵红娟, 赵博文, 潘美, 纪园园, 彭晓慧, 陈冉. 应用多普勒超声定量分析正常中晚孕期胎儿左心室收缩舒张时间指数[J]. 中华医学超声杂志(电子版), 2023, 20(09): 951-958.
[8] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[9] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[10] 徐鹏, 李军, 高巍伦, 王峥, 庞珅, 李春妮, 朱霆. 快速旋转扫查法在胎儿超声心动图检查中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 761-766.
[11] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[12] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[13] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 赵海玥, 王雅晳. 超声心动图在围生期心肌病中的应用价值研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1196-1201.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(09): 1004-1009.
阅读次数
全文


摘要