切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (04) : 399 -407. doi: 10.3877/cma.j.issn.1672-6448.2024.04.008

外周血管超声影像学

椎动脉椎间段血流动力学参数评估椎动脉颅内段狭窄性病变的效能及可行性研究
袁晓峰1, 惠品晶2,(), 颜燕红2, 张炎3, 蔡忻懿2   
  1. 1. 215006 苏州大学附属第一医院神经外科-颈脑血管超声科;215006 苏州大学附属第一医院卒中中心;215300 昆山市第一人民医院超声科
    2. 215006 苏州大学附属第一医院神经外科-颈脑血管超声科;215006 苏州大学附属第一医院卒中中心
    3. 215300 昆山市第一人民医院神经内科
  • 收稿日期:2023-12-22 出版日期:2024-04-01
  • 通信作者: 惠品晶
  • 基金资助:
    苏州市2022年度第二十八批科技发展计划(医疗卫生科技创新)项目(SKY2022026); 苏州大学技术合作项目(H211064)

Feasibility and efficacy of hemodynamic parameters of the intervertebral segment of the vertebral artery in evaluating intracranial stenotic lesions

Xiaofeng Yuan1, Pinjing Hui2,(), Yanhong Yan2, Yan Zhang3, Xinyi Cai2   

  1. 1. Department of Neurosurgery & Carotid and Cerebrovascular Ultrasonography, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;Department of Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;Department of Ultrasonography, First People's Hospital of Kunshan, Kunshan 215300, China
    2. Department of Neurosurgery & Carotid and Cerebrovascular Ultrasonography, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;Department of Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
    3. Department of Neurology, First People's Hospital of Kunshan, Kunshan 215300, China
  • Received:2023-12-22 Published:2024-04-01
  • Corresponding author: Pinjing Hui
引用本文:

袁晓峰, 惠品晶, 颜燕红, 张炎, 蔡忻懿. 椎动脉椎间段血流动力学参数评估椎动脉颅内段狭窄性病变的效能及可行性研究[J]. 中华医学超声杂志(电子版), 2024, 21(04): 399-407.

Xiaofeng Yuan, Pinjing Hui, Yanhong Yan, Yan Zhang, Xinyi Cai. Feasibility and efficacy of hemodynamic parameters of the intervertebral segment of the vertebral artery in evaluating intracranial stenotic lesions[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(04): 399-407.

目的

分析椎动脉椎间段血流动力学参数变化,探讨其评估椎动脉颅内段狭窄性病变的效能及可行性。

方法

回顾性连续纳入2019年1月至2022年9月于苏州大学附属第一医院行颈部血管超声检查且经CT血管造影(CTA)和(或)数字减影血管造影(DSA)证实有椎动脉颅内段不同程度狭窄或闭塞者279例作为研究组,并纳入同期行颈部血管超声且结果未见明显异常的98例健康体检者作为对照组。根据椎动脉颅内段狭窄程度将研究组分为轻度狭窄组74例、中度狭窄组36例、重度狭窄位于分出小脑后下动脉(PICA)后组(重度狭窄-PICA后组)31例、重度狭窄位于分出PICA前组(重度狭窄-PICA前组)46例、闭塞位于分出PICA后组(闭塞-PICA后组)48例及闭塞位于分出PICA前组(闭塞-PICA前组)44例。各组患者均应用颈部血管超声测量患侧及健侧椎动脉椎间段的血流参数,包括椎动脉直径(VAD)、收缩期峰值流速(PSV)、舒张期末流速(EDV)、阻力指数(RI)。比较各组双侧椎动脉椎间段各血流参数的差异;计算EDV比值(患侧EDV/健侧EDV),并对对照组右侧与各研究组患侧相邻狭窄程度两组的椎间段血流动力学参数进行比较;应用ROC曲线分析各参数诊断椎动脉颅内段狭窄性病变的敏感度、特异度、准确性,并确定最佳诊断界值;采用Spearman相关分析颅内段严重狭窄程度与后循环缺血性卒中的相关性。

结果

各组两侧椎间段VAD、PSV、EDV、RI比较,中度及以下狭窄各组中各参数差异均无统计学意义(P均>0.01),而重度及以上狭窄各组中,各参数差异均有统计学意义(P均<0.01)。研究组患侧及对照组右侧相邻两组椎间段血流参数比较,中度及以下狭窄各组中,除对照组与轻度狭窄组EDV外,余各参数差异均无统计学意义(P均>0.01);而中度及以上狭窄各组中,除中度狭窄组与重度狭窄组PSV外,余各参数差异均有统计学意义(P均<0.01)。ROC曲线分析显示,EDV及EDV比值诊断重度狭窄的曲线下面积(AUC)分别为0.898(95%CI:0.857~0.931)、0.943(95%CI:0.909~0.967),最佳截断值分别为11.00 cm/s、0.69;EDV及EDV比值诊断闭塞-PICA后的AUC分别为0.917(95%CI:0.882~0.944)、0.903(95%CI:0.868~0.933),最佳截断值分别为9.00 cm/s、0.56;EDV及EDV比值诊断闭塞-PICA前的AUC分别为0.983(95%CI:0.964~0.993)、0.987(95%CI:0.969~0.996),最佳截断值分别为2.00 cm/s、0.20。椎动脉颅内段重度狭窄及以上各组中,狭窄程度与后循环缺血性卒中呈正相关关系(rs=0.227,P=0.0003)。

结论

颈部血管超声测量椎动脉椎间段各血流动力学参数对颅内段重度狭窄及闭塞具有较高的诊断效能,并能判断闭塞部位与PICA的毗邻关系,为临床治疗及预后的判断提供参考。

Objective

To analyze hemodynamic parameters of the intervertebral segment of the vertebral artery and investigate the efficacy and feasibility of using these hemodynamic parameters to assess stenotic lesions in the intracranial segment.

Methods

A total of 279 consecutive patients who underwent carotid ultrasound, computed tomography angiography (CTA), and/or digital subtraction angiography (DSA) and exhibited varying degrees of stenosis or occlusion in the intracranial segment of the vertebral artery between January 2019 and September 2022 at the First Affiliated Hospital of Suzhou University were included as a study group. Furthermore, 98 healthy individuals who underwent carotid ultrasound during the same period were included as a control group. The study group was categorized based on the degree of intracranial vertebral artery stenosis into the following groups: 74 cases of mild stenosis, 36 cases of moderate stenosis, 31 cases of severe stenosis occurring after the posterior inferior cerebellar artery (PICA) (severe stenosis-post-PICA group), 46 cases of severe stenosis occurring before the PICA (severe stenosis-pre-PICA group), 48 cases of occlusion occurring after the PICA (occlusion-post-PICA group), and 44 cases of occlusion occurring before the PICA (occlusion-pre-PICA group). Hemodynamic parameters, comprising vertebral artery diameter (VAD), peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI), were assessed in all groups. Variations in these parameters between the two sides of the vertebral artery segment were analyzed among the groups. The EDV ratio (EDV on the affected side divided by EDV on the healthy side) was computed. A comparison was made between the right side of the healthy control group and the ipsilateral adjacent stenotic side of each study group concerning the hemodynamic parameters of the intervertebral segment of the vertebral artery. The sensitivity, specificity, and accuracy of each parameter in diagnosing intracranial vertebral artery stenosis were calculated using receiver operating characteristic (ROC) curves, and the cutoff values were determined. Spearman correlation analysis was used to analyze the correlation between the degree of severe intracranial stenosis and posterior circulation infraction.

Results

In the comparison of the parameters of the vertebral artery on both sides of each group, no statistically significant differences were observed in VAD, PSV, EDV, or RI (P>0.01 for all) in groups with moderate or less stenosis. However, in groups with severe stenosis or above, statistically significant differences were observed in all of these parameters (P<0.01 for all). Comparison of the parameters between the affected side of the study group and the right intervertebral segment of the control group revealed that among groups with moderate or less stenosis, statistically significant differences were observed only in EDV between the control group and the mild stenosis group, while no significant differences were found in the remaining parameters (P>0.01 for all). Conversely, among groups with moderate stenosis or above, statistically significant differences were observed in all parameters except for PSV between the moderate stenosis group and the severe stenosis group (P<0.01 for all). ROC curve analysis revealed that the area under the curve (AUC) of EDV and EDV ratio in diagnosing severe stenosis was 0.898 (95% confidence interval [CI]: 0.857~0.931) and 0.943 (95%CI: 0.909~0.967), with optimal cutoff values of 11.00 cm/s and 0.69, respectively. For diagnosing occlusion-post-PICA, the AUC of EDV and EDV ratio was 0.917 (95%CI: 0.882~0.944) and 0.903 (95%CI: 0.868~0.933), with optimal cutoff values of 9.00 cm/s and 0.56, respectively. In diagnosing occlusion-pre-PICA, the AUC of EDV and EDV ratio was 0.983 (95% CI: 0.964~0.993) and 0.987 (95% CI: 0.969~0.996), with optimal cutoff values of 2.00 cm/s and 0.20, respectively. In severe intracranial stenosis of the vertebral artery and above groups, the degree of stenosis was positively correlated with posterior circulation infraction (rs=0.227, P=0.0003).

Conclusion

Carotid ultrasound measurements of hemodynamic parameters in the intracranial vertebral artery segment exhibit enhanced diagnostic accuracy for severe stenosis and occlusion and facilitate the identification of the spatial relationship between the occlusion site and the PICA, thus offering valuable references for clinical treatment decisions and prognosis assessments.

表1 对照组与研究组各组间一般临床资料比较 [例(%)]
表2 研究组患侧与健侧及对照组右侧与左侧椎间段各血流动力学参数比较[()或MP25P75)]
图1 研究组患侧及对照组右侧相邻两组的椎间段各血流动力学参数比较 注:PICA为小脑后下动脉;VAD为椎间段椎动脉直径;PSV为收缩期峰值流速;EDV为舒张期末流速;RI为阻力指数;EDV比值为患侧EDV/对侧EDV;**P<0.01;***P<0.001;****P<0.0001
图2 患者,男性,53岁,自觉头晕2 d。图a为超声图像示右侧椎动脉椎间段舒张期末流速(EDV)降低为9.01 cm/s;图b为超声图像示左侧椎动脉椎间段EDV为14.8 cm/s,计算得出EDV比值为0.61;图c,d为CT血管造影图像示右侧椎动脉颅内段重度狭窄
图3 患者,男性,72岁,头晕伴恶心呕吐,左侧肢体无力3 d。图a为超声图像示右侧椎动脉椎间段舒张期末流速(EDV)降低为5 cm/s;图b为超声图像示左侧椎动脉椎间段EDV为12 cm/s,计算得出EDV比值为0.42;图c,d为数字减影血管造影(DSA)图像示右侧椎动脉颅内段闭塞位于小脑后下动脉分出之后,右侧椎动脉小脑后下动脉以远未见显影
图4 患者,男性,55岁,头晕,右侧肢体活动障碍伴口齿不清1 d。图a为超声图像示左侧椎动脉椎间段舒张期末流速(EDV)降为0 cm/s,呈特殊的“单峰”型改变;图b为超声图像示右侧椎动脉椎间段EDV为23 cm/s,计算得出EDV比值为0;图c,d为数字减影血管造影(DSA)示左侧椎动脉颅内段闭塞位于小脑后下动脉分出之前,左侧小脑后下动脉未见显影
图5 椎间段各血流动力学参数诊断椎动脉颅内段重度狭窄及闭塞的ROC曲线。图a~c分别为各参数诊断重度狭窄、闭塞位于小脑后下动脉分出后(闭塞-PICA后)、闭塞位于小脑后下动脉分出前(闭塞-PICA前)的ROC曲线 注:EDV为舒张期末流速;EDV比值为患侧EDV/对侧EDV;PSV为收缩期峰值流速;RI为阻力指数;VAD为椎间段椎动脉直径;PICA为小脑后下动脉
表3 椎间段血流动力学参数评估椎动脉颅内段狭窄性病变的ROC曲线效能分析
1
Novakovic-White R, Corona JM, White JA. Posterior circulation ischemia in the endovascular era [J]. Neurology, 2021, 97(20_Supplement_2): 158-169.
2
Liu H, Jing J, Wang A, et al. Stroke recurrence and antiplatelets in posterior versus anterior circulation minor stroke or transient ischemic attack [J]. Stroke, 2023, 54(4): 964-972.
3
Zhang C, Li Z, Liu L, et al. Posterior circulation stroke due to vertebral artery disease in the Chinese population [J]. Int J Stroke, 2021, 17(7): 753-760.
4
Gunabushanam G, Kummant L, Scoutt LM. Vertebral artery ultrasound [J]. Radiol Clin North Am, 2019, 57(3): 519-533.
5
国家卫生计生委脑卒中防治工程委员会. 中国脑卒中血管超声检查指导规范 [J/CD]. 中华医学超声杂志(电子版), 2015, 12(8): 599-610.
6
Salerno A, Strambo D, Nannoni S, et al. Patterns of ischemic posterior circulation strokes: A clinical, anatomical, and radiological review [J]. Int J Stroke, 2021, 17(7): 714-722.
7
Li Q, Zhou Y, Xing Y, et al. Effect of haemodynamics on the risk of ischaemic stroke in patients with severe vertebral artery stenosis [J]. Stroke Vasc Neurol, 2022, 7(3): 200-208.
8
Madonis SM, Jenkins JS. Vertebral artery stenosis [J]. Prog Cardiovas Dis, 2021, 65: 55-59.
9
Amin-Hanjani S, See AP, Du X, et al. Natural history of hemodynamics in vertebrobasilar disease: temporal changes in the VERiTAS study cohort [J]. Stroke, 2020, 51(11): 3295-3301.
10
Takekawa H, Tsukui D, Kobayasi S, et al. Point-of-care ultrasound for stroke patients in the emergency room [J]. J Med Ultrason, 2022, 49(4): 581-592.
11
Miao HL, Zhang DY, Wang T, et al. Clinical importance of the posterior inferior cerebellar artery: a review of the literature [J]. Int J Med Sci, 2020, 17(18): 3005-3019.
12
Sparaco M, Ciolli L, Zini A. Posterior circulation ischaemic stroke—a review part I: anatomy, aetiology and clinical presentations [J]. Neurol Sci, 2019, 40(10): 1995-2006.
13
L1 H, Shen Y, Yu Z, et al. Potential role of the renal arterial resistance index in the differential diagnosis of diabetic kidney disease [J]. Front Endocrinol, 2022, 12: 731187.
14
Ballesteros-Acuna LE, Estupinan HY, Gomez-Torres FA. Morphologic characterisation of the posterior inferior cerebellar artery. A direct anatomic study [J]. Folia Morphol (Warsz), 2022, 81(3): 559-566.
15
Bian Y, Miao Y, Wang KY, et al. [Analysis of characteristics of collateral circulation pathways in dizziness patients caused by severe bilateral vertebral artery stenosis/occlusion] [J]. Zhonghua Yi Xue Za Zhi, 2021, 101(39): 3244-3247.
16
李秋萍, 华扬, 杨洁, 等. 椎动脉颅外段血流参数变化与颅内段狭窄病变程度的相关性分析 [J]. 中华超声影像学杂志, 2019, 28(11): 940-944.
17
Xu J, Zhou J, Zhong Y, et al. EWVDV-mediated platelet-targeting nanoparticles for the multimodal imaging of thrombi at different blood flow velocities [J]. Int J Nanomedicine, 2020, 15: 1759-1770.
18
Amin-Hanjani S, Du X, Rose-Finnell L, et al. Hemodynamic features of symptomatic vertebrobasilar disease [J]. Stroke, 2015, 46(7): 1850-1856.
19
Markus HS, Harshfield EL, Compter A, et al. Stenting for symptomatic vertebral artery stenosis: a preplanned pooled individual patient data analysis [J]. Lancet Neurol, 2019, 18(7): 666-673.
20
Guppy KH, Charbel FT, Corsten LA, et al. Hemodynamic evaluation of basilar and vertebral artery angioplasty [J]. Neurosurgery, 2002, 51(2): 327-334.
21
Lin SY, Law KM, Yeh YC, et al. Applying machine learning to carotid sonographic features for recurrent stroke in patients with acute stroke [J]. Front Cardiovasc Med, 2022, 9: 804410.
[1] 侯中光, 詹韵韵, 毕玉, 王佳佳, 吴瑕璧, 彭梅. 三维反转成像技术在BI-RADS 4类乳腺肿块应用中的初步研究[J]. 中华医学超声杂志(电子版), 2024, 21(04): 370-376.
[2] 尹宏宇, 吴青青, 李晓菲. 颈后透明层和头臀长在妊娠11~13+6周双胎心脏畸形筛查中的价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 251-256.
[3] 朱惠娟, 邝海燕, 骆迎春, 邓光祁, 蒋凌晖, 汪圣, 王政, 孔一凡, 龙煜. 胎儿脐-门-体静脉系统异常分流的产前超声诊断及产后结局[J]. 中华医学超声杂志(电子版), 2024, 21(03): 257-267.
[4] 徐燕, 茹彤, 郑明明, 顾燕, 朱湘玉, 严陈晨, 陈玲, 戴晨燕. Miller-Dieker综合征胎儿产前超声、磁共振影像学特征及遗传学分析[J]. 中华医学超声杂志(电子版), 2024, 21(03): 281-287.
[5] 赫兰, 杨泽堃, 张颖, 王玉东, 陈伟导, 王一同, 申锷. 双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 137-142.
[6] 蔡林利, 宋宏萍, 巨艳, 党晓智, 韩铭, 肖迎聪. 超声结合临床病理指标模型对T1-2期乳腺癌腋窝淋巴结转移的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 143-150.
[7] 金从稳, 陈霖霖, 刘浩, 余有声, 陈本鑫. 超声联合细针穿刺定位在乳腺微小病灶切除中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 423-426.
[8] 王伟利, 唐流康, 陈明政, 谢峰. 超声检查在肝胆外科中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 265-269.
[9] 石豆豆, 王新星, 王向阳, 刘震洋, 曾淑娟, 仝海波. 急性前循环大血管闭塞机械取栓的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 112-116.
[10] 陈雪梅, 潘晓虎, 杨明刚, 刘邦勇, 曹月洲, 贾振宇, 赵林波, 刘圣. 不同基底动脉弯曲度对急性基底动脉闭塞患者取栓治疗的影响[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 93-99.
[11] 初晨宇, 徐强, 饶军华, 李岳锋. 眶上锁孔入路手术建立食蟹猴大脑中动脉闭塞模型[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 8-13.
[12] 李婧婧, 陈茜, 周惠芬, 曾禹沙, 许新意, 樊志敏, 薛雅红. 基于经会阴超声及肛管直肠测压分析女性排便梗阻综合征患者盆底形态与功能特征[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 229-234.
[13] 赵峰, 邓默. 纤维蛋白原水平、踝肱指数与外周血管支架治疗下肢动脉硬化闭塞症后再狭窄的关系[J]. 中华临床医师杂志(电子版), 2024, 18(02): 144-151.
[14] 刘通, 李菲, 朱莹, 王蓓. 剪切波弹性成像对甲状腺癌术后放射性碘治疗损伤唾液腺腺体的评估[J]. 中华诊断学电子杂志, 2024, 12(02): 80-84.
[15] 张允耀, 王静, 范爱娟, 牟海萍. 超声诊断卵巢交界性肿瘤临床价值的荟萃分析[J]. 中华诊断学电子杂志, 2024, 12(02): 85-89.
阅读次数
全文


摘要